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Project title: Impacts of an AMOC collapse on atmospheric circulation in
the Euro-Atlantic area.

Principal investigator: Andrea Vito Vacca

Extended abstract

1. Background and motivation

The Atlantic Meridional Overturning Circulation (AMOC) is the Atlantic branch of the global
thermohaline circulation, characterized by warm and salty water flowing northward in the upper layers
and colder, deep waters flowing southward. Previous work based on paleoclimatic evidence and
modelling studies highlight the importance of the AMOC in shaping the climate at the global scale
(Bellomo et al., 2021; Clark et al., 2002; Jackson et al., 2015; Rahmstorf, 2002). In response to increased
greenhouse gas concentration in the atmosphere, models robustly project a slowdown of the AMOC
throughout the 21st century, although there is large uncertainty on the magnitude of this weakening
(Srokosz & Bryden, 2015; Weijer et al., 2020). Moreover, there is an ongoing debate regarding the ability
of models to realistically predict the abrupt collapse of the circulation, namely crossing a tipping point,
with possible devastating societal impacts which, however, are still largely unknown (Liu et al., 2017;
Orihuela-Pinto et al.,, 2022; Zhang et al., 2019). It is therefore of great interest to improve our
understanding of the regional impacts of the AMOC slowdown/shutdown both from a scientific and
societal standpoint.

In this project we aim to investigate atmospheric circulation changes over the Euro-Atlantic region
associated with variations in the AMOC strength. Such changes are strictly connected with the occurrence
of extreme weather conditions, which have significant impacts on socio-ecological systems (Fabiano et
al., 2021; Faranda et al., 2023; Franzke, 2013; Horton et al., 2015).

The mechanisms governing the mid-latitudes atmospheric circulation changes with a warmer climate are
the subject of a great ongoing debate. Future projections of climate change show a narrowing of the
eddy-driven jet in the North Atlantic, with intensification and eastward elongation of the westerlies over
Europe (Oudar et al., 2020; Peings et al., 2018). Further, the jet stream is influenced by the so called tug
of war between Arctic Amplification and Upper Troposphere Warming (Barnes & Screen, 2015; Coumou
et al., 2018; Fabiano et al., 2021). In this context, the role of the ocean is yet to be ruled out (Bellomo et
al., 2023; Delworth et al., 2022). Previous work stressed on the importance of AMOC decline in future
projections of climate change worldwide, highlighting that it is a source of enormous uncertainty
especially when analysing the output of an ensemble of global climate models (Bellomo et al., 2021). In
particular, our results (Vacca et al., in prep.) indicate that the AMOC decline plays a key role in the
inter-model variability of future atmospheric circulation in the North Atlantic in climate model
projections of the 21st archived in CMIP6.
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In particular, our previous work analyzes the impacts of the inter-model spread in 21st century AMOC
decline on projections of future jet stream and weather regimes. However, the relative roles of AMOC
decline and greenhouse gas forcing on atmospheric circulation cannot be inferred from CMIP6
simulations. Hence, we intend to perform ad-hoc simulations with EC-Earth3 to better understand the role
of AMOC in projected changes in Euro-Atlantic atmospheric circulation, disentangling the impacts
associated with AMOC forcing from those related to other processes, such as increasing greenhouse gases
concentration.

2. Proposed activities

2.1 Model

We plan to conduct model experiments using EC-Earth3, a cutting-edge global climate model developed by
the Earth System Model (ESM) consortium that is actively participating in CMIP6 (Coupled Model
Intercomparison Project Phase 6). EC-Earth3 consists of several components, including the atmospheric
model ECMWF IFS cy36r4, the ocean model NEMO3.6 with the LIM3 sea ice component, the land surface
scheme H-TESSEL, and the coupler OASIS3-MCT. Our proposed simulations for CMIP6 are based on the
standard resolution of EC-Earth3, which utilizes a spectral truncation of TL255 with 91 vertical levels for the
atmosphere, and an ORCA1 grid with 75 vertical levels for the ocean. This configuration corresponds to a
horizontal resolution of approximately 80 km in the atmosphere and 100 km in the ocean, with a grid
refinement to around 40 km in the tropical ocean. EC-Earth3 is already installed and used on the ATOS
machine of ECMWEF.

2.2 Simulations

To isolate changes in atmospheric circulation attributable to the AMOC decline, we plan to perform a series
of idealized reversed water hosing experiments. This experimental design has proved his success in other
studies, such as in (Delworth et al., 2022; Liu et al., 2020) that implemented it in different versions of a
different (CESM2) global climate model.We will run the model following the CMIP6 protocol for the
following ScenarioMIP and CMIP experiments: the business as usual ssp5-8.5 scenario which spans the years
2014-2100 starting from the historical experiment, and the idealized abrupt 4xCO2 experiment in which an
abrupt quadrupling of CO2 is held fixed throughout the experiment which is started from the preindustrial
control simulation. In these two experiments the AMOC steadily declines due to increased ocean stability
caused by greenhouse gases. However, we will also add a positive salinity anomaly uniformly above 50°N
over the North Atlantic and Arctic oceans that artificially strengthens deep water formation and therefore the
AMOC. This way we will be able to compare experiments in which the AMOC weakens due to greenhouse
gases with others in which we keep it fixed through the reversed hosing, allowing us to separate the effects of
external forcings on atmospheric circulation from the effects of the AMOC decline.

The virtual salinity flux will be applied in the following terms:

o h(ii) S (t4,0)
Ftj,) = —Gg5 —

where S, is the local salinity in the upper layer, dz,is the upper layer thickness, and # is the following:

hG,D = Ty

The region where the reversed water hosing is implemented (specifically, the North Atlantic and the Arctic
in our scenario) is denoted by the variables (j, 1) belonging to the set R. For any other region, the value is 0.
The salinity anomaly strength, denoted by H, is equal to 0.3 Sv (equivalent to 0.3x106 m3s-1). The
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variables dx and dy represent the zonal and meridional grid spacings, respectively. Consequently, we will
apply a correction to the 3D salinity field in the remaining areas of the ocean, ensuring conservation of the
total amount of salt. The equation below represents the quotient of the total removed flux divided by the
total volume of the ocean.

ThG.D)S, (t).0)dxdy
/ dxdydz

global

As explained above, this experimental setup allows us to study a system in which CO2 concentration increases
but AMOC is not weakened. Note that the ‘canonical’ (not reversed) water hosing setup has been implented
already in EC-Earth3 but to address other research questions (Bellomo et al., 2023; Jackson et al., 2023).Our
intention is to slightly adapt it to address our research goal. We will analyse the output data in terms of change
in atmospheric circulation by comparing the results with the corresponding control simulations, in which the
AMOC is weakened. In particular, we will employ metrics describing the change of the North Atlantic storm
track, jet stream and weather regimes occurrence (Fabiano et al., 2021; Madonna et al., 2017; Shaw et al.,
2016, Vacca et al. in prep.).

3. Justification of the computer resources requested

Runs on Atos HPCF have determined the most effective setup for the standard resolution of EC-Earth3
(TL255L91-ORCA1L75) requires the utilization of five nodes. These nodes consist of 490 cores for IFS,
148 cores for NEMO, one core each for the runoff mapper and the XIOS server. We estimate that
employing the standard configuration of EC-Earth3 for one model year will consume approximately
20,000 SBU. Considering 6-hourly outputs for IFS and monthly outputs for NEMO, we anticipate a
storage requirement of about 50 GB per model year, amounting to a total of 360 TB over the course of
two years, evenly divided. To differentiate the forced signal from the internal variability of the system,
each model experiment will be conducted with five ensemble members.

In summary, for the experiments performed within the project we request the following resources:

Model Experiments Duration Ensemble Total model
configuration members years
Year Reversed Control experiment 300 years 5 1500
1 water-hosing
with 4xCO2 Reversed Water hosing 300 years 5 1500
and GHG
Extra (for testing) 100 years 1 100
Total model years Year 1 3600
SBU Year 1 72,000,000
Storage after Year 1 180TB
Year Reversed Control experiment 300 years 5 1500
2 water-hosing
with ssp5-8.5
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Overshoot 300 years 5 1500
Extra (for testing) 100 years | 100
Total model years Year 2 3600
SBU Year 2 72,000,000
Storage after Year 2 360TB
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