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Principal Investigator: Matteo Cini

Project Title: Sampling AMOC tipping events with a rare event algorithm in the
EC-Earth4 model

Extended abstract
All Special Project requests should provide an abstract/project description including a scientific plan, a justification of
the computer resources requested and the technical characteristics of the code to be used. The completed form should
be submitted/uploaded at
https://www.ecmwf.int/en/research/special-projects/special-project-application/special-project-request-submission.

Following submission by the relevant Member State the Special Project requests will be published on the ECMWF
website and evaluated by ECMWF and its Scientific Advisory Committee. The requests are evaluated based on their
scientific and technical quality, and the justification of the resources requested. Previous Special Project reports and the
use of ECMWF software and data infrastructure will also be considered in the evaluation process.

Requests exceeding 5,000,000 SBU should be more detailed (3-5 pages).

1. Introduction

The Atlantic Meridional Overturning Circulation (AMOC) has a crucial role for climate regulation,

controlling the meridional transport of heat and freshwater (Bellomo et al. 2021; Weijer et al. 2019).

Anthropogenic climate change is projected to weaken the AMOC due to decreased sea water

density in the subpolar North Atlantic (Masson-Delmotte et al. 2023; Smeed et al. 2018). As a

result, the AMOC weakening can induce widespread regional and global climate impacts, including

significant temperature decreases in the Northern Hemisphere, changes in the atmospheric

circulation and changes in the global precipitation patterns (Bellomo et al. 2021; Liu et al. 2020;

Jackson et al. 2015; Bellomo et al. 2023).

Concerns arise about the possibility that the AMOC may pass a tipping point collapsing into a

stable weakened state (Weijer et al. 2019; Lenton et al. 2008; Armstrong McKay et al. 2022; Boers

2021), which the sixth assessment report of the IPCC summarises as a low probability event but

with a potentially very high impact on climate (Masson-Delmotte et al. 2023). AMOC multistability is

related to the salt-advection feedback (Weijer et al. 2019).

The studies on the weakening and/or stability of the AMOC are usually performed in simulations

with external forcing elements like greenhouse gases (Bellomo et al. 2018), freshwater (Liu et al.

2020; Jackson et al. 2015; Bellomo et al. 2023; Jackson et al. 2022) or surface heat perturbations

(Gregory et al. 2016). This allows the analysis of the climatic response to an AMOC slowdown and

assess if the system has passed a bifurcation tipping point, so that it would remain in the new

collapsed state, following a relaxation of the forcing elements.

On the other hand , some recent studies attribute the internal chaotic variability of the system a key
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role in triggering an AMOC tipping event (Romanou et al. 2023; Mehling et al. 2023). The potential

occurrence of a complete AMOC tipping solely driven by internal variability, i.e. a noise-induced

tipping, has been investigated as well in an oceanic box model (Castellana et al. 2019), and in the

PlaSIM-LSG (Angeloni 2022; Fraedrich et al. 2005; Maier-Reimer e Mikolajewicz 1992)

intermediate complexity model (Cini et al. 2023). In this latter study a rare event algorithm (see

section 3 below for details) was employed on ensemble simulations of the present-day climate to

explore the potential for noise-induced tipping of the AMOC, driven exclusively by internal climate

variability. In particular, in Cini et al. 2023, the following interesting results were found:

I. The algorithm effectively identifies pathways leading to abrupt slowdowns of the AMOC,

which are unprecedented in a 2000-year control run. Some of these weakened AMOC

states result in a collapsed state without indications of AMOC recovery over

multi-centennial time scales.

II. The temperature and Northern Hemisphere jet stream responses to these internally

induced AMOC slowdowns exhibit significant similarities to those observed in externally

forced AMOC slowdowns in state-of-the-art climate models. The initial driver of the AMOC

slowdown appears to be Ekman transport induced by westerly wind stress anomalies in the

North Atlantic, followed by a complete collapse of oceanic convection in the Labrador Sea.

These findings illustrate that transitions to a collapsed AMOC state solely due to internal variability

in a model simulation of the present-day climate are infrequent but theoretically plausible.

2. Scientific goals

In order to assess the robustness of the results obtained with PlaSIM-LSG in Cini et al. 2023 and

to gain insights into the physics of the transitions, it is crucial to upgrade the study to a model that

captures more realistic ocean dynamics. In this project we aim to continue the investigation of

noise-induced Atlantic Meridional Overturning Circulation (AMOC) tippings progressing through a

climate model hierarchy with increasing complexity and realism. While the phenomenon has been

studied in a box model and an intermediate complexity model, our focus is now on examining a

low-resolution state-of-the-art climate model: the EC-Earth4 model in the TL63L31-ORCA2Z31

configuration. The scientific questions we aim to address can be summarised as follows:

● Is a rare event algorithm able to sample spontaneous AMOC collapses driven by the

internal variability in a state-of-art climate model?

○ If the answer is yes, what is the climate response to a spontaneous AMOC collapse

as well as the initial physical processes triggering the AMOC spontaneous collapse?

○ If not, such a result could indicate that the model configuration lacks a stable state

of weak AMOC, or that resilience mechanisms inhibit noise-induced tipping, or that

adjustments to the rare event algorithm setup are necessary for application to a

climate model with a significantly higher number of degrees of freedom.
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3. Proposed Activities

3.1 The model
We propose to perform simulations using a TL63L31-ORCA2Z31 configuration of the European

Community Earth System Model, based on EC-Earth4. This low-resolution model enables

large-ensemble simulations with computationally affordable costs. In comparison to the

PlaSIM-LSG GCM (Angeloni 2022; Mehling et al. 2022; Cini et al. 2023), the model exhibits

notable enhancements in terms of the number of resolved physical processes, grid spatial

resolution, and the representation of unresolved physical processes.. The development of

EC-Earth4 commenced in 2020 under the EC-Earth consortium (see

https://ec-earth.org/ec-earth/ and (Shuting 2021)), and it represents the latest generation of

EC-Earth consortium models. EC-Earth4 is based on the OpenIFS atmospheric model and

NEMO4 ocean model. The proposed low resolution version of EC-Earth4, featuring approximately

2.8˚ x 2.8˚grid resolution for the atmosphere and 2° x 2° grid resolution for the ocean, currently

lacks reference in literature as it is undergoing its final tuning development phase. However, this

configuration has already been tested and used for preliminary simulations on ECMWF’s Atos

supercomputer.

3.2 The rare event algorithm

In order to capture multiple spontaneous tipping events of the AMOC, large ensemble simulations

of considerable duration are required. However, conducting extensive ensemble simulations

over a considerable duration becomes computationally impractical. To overcome this

challenge, following Cini et al, 2023, we propose the application of a rare event algorithm (Ragone

et al. 2020; Ragone et al. 2021) . The algorithm involves a set of killing and cloning rules applied

throughout the ensemble simulation's evolution to populate the ensemble with model trajectories

featuring rare values of a specified metric. In the case of Cini et al. 2023, the metric is the AMOC

value between 46-66°N. The algorithm aims to progressively decrease this metric by cloning

ensemble members with a weaker AMOC and eliminating those with a stronger AMOC (refer to the

Methods section of the paper for further details). Notably, in this setup where no external forcing is

introduced, any tipping is inherently induced by the internal dynamics of the climate system.

The implementation of the algorithm to EC-Earth4 will be straightforward. The algorithm interacts

with the model only via its output at the end of each year of simulation, in particular in this case by

selecting ensemble member trajectories based on their AMOC index. It then rearranges restart

files for the following year of simulation. In addition, a new version of the algorithm is under

development for EC-Earth3 (see Ragone 2023).
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3.3 Simulations
Since noise-induced tippings were found in a given configuration of the algorithm in Cini et al.

2023, we aim to reproduce the same experiments. We estimate that a control run simulation of the

model will be available within the first half of 2024. The rare event algorithm has some parameters

that need to be tuned in order to obtain the strongest AMOC decline. We plan to conduct three

distinct 70-year test simulations, each with 100 members, to investigate the simulation's evolution

with three different values of the parameter controlling the algorithm's selectivity. The most suitable

value is the one demonstrating the most pronounced decrease in the AMOC index during the test

simulation.

Upon obtaining a satisfactory parameter value, our next step involves conducting four independent

simulations diverging from four distinct initial states of the control run. Each simulation is structured

in two segments:

1. “Rare event simulation”. 120-years performed with the rare-event algorithm activated . This

segment of the simulation consists of a large ensemble of 100 members.

2. “Recovery simulation”. Additional 180 years performed with the algorithm deactivated. This

phase enables us to scrutinise the system's unrestricted evolution, determining whether the

AMOC index undergoes recovery or progresses toward a collapsed state Based on results

from Cini et al 2023, we estimate that a simulation with 20 members is sufficient for this

purpose.

4. Justification of the requested computer resources

The model, with the proposed TL63L31-ORCA2Z31 configuration, has already been run on Atos

with 2 nodes (256 cores). A proper scaling test has not yet been carried out , but we can give a

reasonable estimation considering the results of this test simulation. Approximately 28 CHPSY are

needed, which results in 500 SBU per simulated year. While, considering monthly outputs, 650 MB

(600 MB for the ocean and 50MB for the atmosphere) of data storage are needed per simulated

year.

Experiment Duration Ensemble
members

Number of
simulations

Total
years

Total resource
(approx)

Total data
storage
(approx)

Year 1
Test 70 100 3 21,000

Rare event 120 100 1 12,000
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Recovery 180 20 1 3,600

Total year 1 36,600 18,500,000
SBU

24 TB

Experiment Duration Ensembl
e
members

Number of
simulations

Total
years

Total resource
(approx)

Total data
storage
(approx)

Year 2
Rare event 120 100 3 36,000

Recovery 180 20 3 10,800

Total year 2
(total data storage is year 1 + year 2)

46,800 23,500,000
SBU

55 TB
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