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Extended abstract

Overview

In this special  project, we plan to explore the bi-stability of the Atlantic Meridional Overturning
Circulation (AMOC) in a state-of-the-art climate model by applying different water hosing forcing in
the North Atlantic. This work will be carried out with the EC-Earth climate model at its standard
resolution, which is represented by a horizontal resolution of approximately 80 km in the atmosphere
and 100 km in the ocean. Our experiments will take part in a Multi-model Inter-comparison Project
(MIP) to better understand the likelihood of the AMOC collapse in the future with the last generation
climate models or earth system models.

1. Introduction

1.1 Scientific Context

The Atlantic Meridional Overturning Circulation (AMOC) represents a crucial  component of our
climate  because  it  contributes  to  the  heat  redistribution  around the  globe.  It  is  constituted  by  a
shallow-layers  northward  component  of  warm  and  salty  waters  and  a  deep-layers  southward
component of cold waters in the Atlantic (Buckley & Marshall, 2016). This ocean circulation system
transports a substantial amount of heat from the south, including the Southern Hemisphere and the
Tropics, toward the North Atlantic (Bryan, 1962; Ganachaud & Wunsch, 2000; Jackson et al., 2015;
Weijer et al., 2020).

Since  the  pioneering  work  of  Stommel  (1961),  it  is  thought  that  the  AMOC  has  a  bi-stable
equilibrium state, either on, corresponding to our current climate, or off. A transition between these
two  states  could  be  irreversible.  The  term  hysteresis  is  used  to  refer  to  this  irreversibility.
Furthermore, through a simple conceptual model, Rahmstorf (1996) has found that the response of
the oceanic circulation to changes in the freshwater input takes the form of a hysteresis curve. Then,
a  mechanism  that  can  disrupt  the  current  stable  state  of  the  AMOC might  be  the  addition  of
freshwater into the North Atlantic. This would yield surface seawater to be less dense and therefore
more difficult to sink, slowing down the thermohaline circulation.

Indeed, an increase in the freshwater input to the North Atlantic is likely to occur as a response to
global warming due to increased precipitation on oceans, increased runoff, sea-ice melting and the
melting of Greenland. In light of this, state-of-the-art climate models project a weakening of the
AMOC in response to global warming. The Fifth Report of the Intergovernmental Panel on Climate
Change (IPCC) concludes that a weakening of the AMOC before 2100 is very likely, with a range of
weakening of 12-54% for a high-range scenario (Collins  et  al,  2013).  It  was also found that  an
AMOC collapse is very unlikely to occur in the 21st century (Schmittner et al., 2005; Cheng et al.,
2013; Stocker et al., 2013; Schleussner et al., 2014). However, the future projections in the previous
comprehensive climate model simulations have either neglected or highly idealized the mass loss of
the Greenland ice-sheet  in terms of magnitude,  spatial,  and temporal  characteristics.  In addition,
there  remains  a  suggestion  that  climate  models  as  a  whole  may  be  biased  towards  a  too-stable
AMOC (Valdes, 2011; Mecking et al., 2017).
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1.2 Current status

Paleoclimate  records  suggest  that  input  of  freshwater  from the  ice-sheet  melting  into  the  North
Atlantic produced abrupt changes in the AMOC. Those changes are believed to be linked to changes
in the climate (Broecker et al.,  1985; Bond et al.,  1997; Rahmstorf 2002; McManus et  al.  2004;
Clement  & Peterson 2008;  McNeall  et  al.  2011),  supporting  the  view of  the  classic  bi-stability
structure and hysteresis behaviour. From a more theoretical viewpoint, the bi-stability of the AMOC
equilibrium state was first exhibited in box models and a range of climate models of low complexity
(Stommel,  1961;  Manabe & Stouffer,  1988;  Gregory  et  al.,  2003).  Moving forward  into  model
complexity, Rahmstorf et al. (2005) have obtained a qualitatively similar hysteresis response of the
thermohaline circulation to the freshwater forcing in 11 climate models of intermediate complexity.
Yet, testing the AMOC hysteresis response in coupled climate models is extremely challenging due
to the computational constraints. 

Hawkins  et  al.,  (2011)  showed  for  the  first  time  an  AMOC bi-stability  response  to  freshwater
perturbations in the complex climate model FAMOUS. More recently, Jackson & Wood (2018) have
found hysteresis  of  the  AMOC (quasi-irreversible  shutdown)  in  a  climate  model  with  an  eddy-
permitting ocean. In particular, authors have shown that if the AMOC weakening due to freshening is
sufficiently high, the AMOC remains in a weak state even when the hosing is stopped. However, a
weak AMOC can recover if the hosing is applied for a limited time. Their model experiments were
conducted with a sixth Coupled Model Intercomparison Project (CMIP6) generation model, resulting
in the most complex model to show the AMOC hysteresis behaviour. 

There are still open questions as to whether the same results regarding the AMOC behaviour found
by Jackson & Wood (2018) would be reproduced by other CMIP6 generation climate models and
whether the feedback mechanisms would change in a warmer climate. In that context, Laura Jackson
from the MetOffice is launching a proposal for a new Multi-model Inter-comparison Project (MIP) to
understand  the  processes  and  feedbacks  controlling  the  AMOC  response  in  the  last  (CMIP6)
generation climate models. The combination of insights under a MIP effort will contribute to a better
understanding  of  the  most  important  feedbacks  controlling  the  AMOC stability  and  how  those
feedbacks vary across models.

1.3 Objective and expected contributions to the field

The main aim of this special project is to participate  in the multi-model inter-comparison project
studying the AMOC hysteresis with the EC-Earth model. In this way, this project will contribute to a
better  understanding of the likelihood of AMOC collapse in the future.  Additionally,  we aim at
assessing the feedbacks in a warmer climate. 

As part of a multi-model inter-comparison project, data produced during this project might be shared
with the climate modelling community to allow for a large range of studies focused on the AMOC
mechanism responses to different hosing forcing.

2. Methodology

2.1 The General Circulation Model

We will use the CMIP6-generation General Circulation Model (GCM) EC-Earth version 3 (Doescher
et al. 2020). The atmospheric component consists of a modified version of cycle 36r4 Integrated
Forecast System (IFS; ECMWF, 2009), and includes the land-surface scheme H-TESSEL (Balsamo
et  al.,  2009).  The  ocean  model  consists  of  the  Nucleus  for  European  Modelling  of  the  Ocean
(NEMO; Madec, 2008) version 3.6, which includes the Louvain la Neuve (LIM3; Vancoppenolle et
al., 2012) sea-ice model. The OASIS3-MCT (Valcke, 2013) coupler version 3.0 is used to exchange
fields between the atmosphere and ocean components. The IFS spatial resolution is T255 L91, which
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corresponds  to  a  horizontal  resolution  of  about  80  km  at  the  equator  and  91  vertical  levels
represented in a hybrid coordinate system. The model configuration in NEMO is the ORCA1L75, a
tripolar grid with an average horizontal resolution of 1° × 1° and 75 vertical levels.

2.2 The experiments

The  first  part  of  the  project  is  intended  to  be  performed  during  the  first  year  and  it  aims  at
understanding the feedback mechanisms controlling the AMOC hysteresis under the current climate.
Therefore,  starting  from an initial  state  corresponding to  the  CMIP6  piControl run  (steady pre-
industrial forcing), a set of water hosing experiments will be run. The hosing will be applied as an
additional freshwater flux uniformly over the region between 50°N in the Atlantic and the Bering
Strait. The planned experiments are the following:

a) moderate water hosing of 0.3 Sv for 150 years;
b) moderate water hosing of 0.3 Sv for 20 years, stop the hosing and continue the simulation for 130
years with no hosing;
c) moderate water hosing of 0.3 Sv for 50 years, stop the hosing and continue the simulation for 100
years with no hosing.

Note: If a) results in an AMOC collapse, the experiment will be repeated with weaker water hosing.

The second part of the project is planned for the second year and it will address the same issue as the
first part but in a warmer climate. Therefore, the experiments a) to c) will be run starting from an
initial condition corresponding to the CMIP6 abrupt4xCO2 experiment (steady 4xCO2 forcing).

3. Justification for the resources requested

Considering the simulations described above, we need to run 450 model years per set of experiments.
Some additional years will be needed to test the water hosing set-up and some additional computing
time to cmorize the output. We estimate, therefore, 500 model years to be run per year of the project.
From scaling tests already performed in CCA, the optimal configuration for EC-Earth version 3 in its
standard resolution (the one we intend to use) is obtained with 360 cores (240 for IFS,  118 for
NEMO, 1 for the runoff mapper and 1 for XIOS server). With that configuration, each model year
costs around 19000 SBU. Therefore, for running 500 model years we need roughly 9.5 millions of
SBU per year of the project.

With regards to the storage, considering 6-hourly output for IFS and monthly means for NEMO, the
requirements for the storage are around 50 GB/model-year. Saving 900 model years would imply the
total amount of required space at the end of the project of around 45 TB. Storage resources will be
split into equal parts between the two years of the project.
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