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Computer resources allocated/used for the current year and the previous one  
 

 Previous year Current year 

 Allocated Used Allocated Used 

High Performance 
Computing Facility  (units) 10000 0.0 10000 0.0 

Data storage capacity (Gbytes) 1000 32 1000 32 

 
Summary of project objectives  
 
The special project focuses on detecting and estimating changes in the coupled oceanic/atmospheric 
water and energy cycles. Its second focus, also employing reanalysis data, are novel methods for 
describing forecast uncertainty growth. 

 
Summary of problems encountered (if any) 
 
Less HPC resources than requested have been used, simply because we did not need them. 
Transition to ATOS and new login services was smooth.  
 
Summary of results of the current year (from July of previous year to June of current 
year)  
 
This year we continued our work on evaluating coupled energy and water budgets from ERA5 and 
ocean reanalyses. In addition we analysed budgets from the GREP ocean reanalysis ensemble with 
CMIP6 output. Results are published or at least available in manuscript form in Mayer et al. 2023, 
Fritz et al. 2023, Winkelbauer et al. 2023.  
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This year we have also worked on the problem of replacing the ensemble prediction system for 
precipitation with machine learning. Precipitation forecasts are less accurate compared to other 
meteorological fields because several key processes affecting precipitation distribution and intensity 
occur below the resolved scale of global weather prediction models. This requires to use higher 
resolution simulations. To generate an uncertainty prediction associated with the forecast, 
ensembles of simulations are run simultaneously. However, the computational cost is a limiting 
factor here. Thus, instead of generating an ensemble system from simulations there is a trend of 
using neural networks. Unfortunately, the data for high resolution ensemble runs is not available.  
 

 

Fig. 1: Monthly mean total energy flux divergence for January 2015 calculated from ERA5 data as 
described in Mayer et al. (2021) applying uniform mass flux adjustment across all model levels 
(upper panel) and adjustment applied only to the lower 14 model levels. RMS is reduced by another 
20% using the second method. Plot uses full resolution F480 Gaussian grid (quadratic grid for 
T639 native ERA5 resolution) 
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We propose a new approach to generating ensemble weather predictions for high-resolution 
precipitation without requiring high-resolution training data. The method uses generative 
adversarial networks to learn the complex patterns of precipitation and produce diverse and realistic 
precipitation fields, allowing to generate realistic precipitation ensemble members using only the 
available control forecast. We demonstrate the feasibility of generating realistic precipitation 
ensemble members on unseen higher resolutions. We use evaluation metrics such as RMSE, CRPS, 
rank histogram and ROC curves to demonstrate that our generated ensemble is almost identical to 
the ECMWF IFS ensemble (Brecht and Bihlo 2023 a,b). 
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Summary of plans for the continuation of the project  
 
In the remaining time of the project we aim to update the Copernicus mass consistent energy budget 
data set that is now public (Mayer et al. 2022). We also plan to explore methods to get better noise 
reduction over land, where some preliminary progress could be recently made (see Fig. 1) 
 
A proposal for another special project devoted to further refinement of the developed methods 
together with usage of forthcoming reanalysis data products has been submitted. 
 
We plan to continue the development of differential equations-based machine learning models for 
global ensemble forecasting. 
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