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Abstract 

Atmospheric convective phenomena might generate damaging extreme events. In a changing climate, the paradigm of 

convective events and its consequences, could change in terms of intensity, duration and spatial scale. We propose that 

by running a Regional Climate Model, at a very high resolution, will enable a better assessment of these type of events 

for present day climate, and how these phenomena will evolve in a transient climate. The study of convection based on 

very high resolutions will improve our knowledge, allowing a better assessment and projection of these events, by 

reducing the uncertainty of climate models. This project will focus into two main components: (i) assessment of the model 

ability to reproduce convective phenomena, together with an assessment of its consequences for the current climate, and 

(ii) assessment of future climate conditions regarding convection inhibition or intensification, together with a 

characterization of changes in intensity, spatial and temporal scale of convective related weather extremes. These 

simulations will be performed with the WRF model forced by ERA5 and ERA-Interim and by the CMIP5 and CMIP6 

version of the EC-Earth global model. 

 

Motivation 

Convective precipitation phenomena are often associated with extreme weather events (Ducroq et al., 2014), such as flash 

floods, windstorms, landslides, hail or lightning (Carvalho et al., 2002; Beniston, 2006; Stucki et al., 2015). This type of 

phenomena occurs over areas of rapid moisture convergence and over regions of conditionally unstable atmospheric 

stratification. Convective cells can form anywhere, from homogenous plains to orographic regions or even as response to 

land/sea or urban/rural contrasts. Over the tropics or mid-latitude regions, convection is the predominant type of 

precipitation, where it can influence the general circulation of the atmosphere. A changing climate interferes with 

convective phenomena generation, by modifying the large-scale conditions which could impact precipitation extremes 

(Kendon et al., 2014; Prein et al., 2017). Prein et al, 2017 also showed that precipitation increases in energy limited 

regions, contrasting with a significant reduction over water limited areas, for the U.S. Thus, a study about this phenomena 

is needed in this context, as these changes could lead to an increase of damaging extreme weather events. 

The Alps is one of the most active regions for convective phenomena generation. Since it is a mountainous region, the 

Foehn effect occurs, namely during winter, which generates persistent precipitation over a week period. On the other end, 

during the Mediterranean storm season, storms generated over the Mediterranean Sea could be advected into the alps, 

potentially intensifying the consequences, such as flash floods or landslides. Over Europe, another location for convective 

storm generation is the Iberian Peninsula, where during late summer and autumn, due to persistent heating, local shallow 

convective phenomena could evolve into deep convection, creating dangerous and damaging windstorms, lightning, hail 

and very intense precipitation over a short period (Coppola et al., 2019). 

Today, our only tool to assess future climate conditions, in response to an increase of greenhouse gases in the atmosphere, 

are the Global Circulation Models (GCMs). GCMs can reproduce the large-scale circulation of the atmosphere and ocean, 

as well their decadal to centennial variability (Randall et al. 2007). However, the spatial and temporal scales of GCMs 

are insufficient to study local weather, such as convection and land-ocean-atmosphere interactions. Thus, leading to the 

development of Regional Climate Models (RCMs). RCMs constitute an increasingly sophisticated method, since they 

can reproduce physically consistent regional and local circulations (Giorgi and Mearns, 1991; Laprise, 2008; Soares et 

al, 2012; Soares et al, 2017). Over the years, the increase of computational power has enabled higher resolution RCMs 

runs for larger domains. An example is the 0.11o resolution of the Word Climate Research Program Coordinated Regional 

Downscaling Experiment (WCRP-CORDEX), which encompasses the full European continent (Giorgi et al, 2009). 

EURO-CORDEX consists in a set of simulations where RCMs are forced by CMIP5 (Coupled Model Intercomparison 

Project, Phase 5) GCMs, enabling the study of both current climate and the evolution of climate over the 21st century. 

The gains of RCMs against GCMs are commonly known as added value. 

The EURO-CORDEX simulations have been extensively evaluated (Kotlarski et al, 2014; Soares et al, 2017), showing 

important gains in precipitation, mainly associated with the enhancement in the representation of orographic features. 

However, for specific regions and variables, no added value was identified. In fact, there are regions where RCM 

projections disagree from GCM projections, for example over the Alps (Giorgy et al., 2016). Therefore, a large uncertainty 

of changes in regional processes remains, namely regarding the extremes (WCRP, 2015). One of the highest contributors 

to this uncertainty are the parametrizations of sub-grid processes (Prein et al., 2015), which interfere with extreme events 

and numerous feedback mechanisms at regional scales, such as the underestimation of hot days (Brockhaus et al., 2008), 
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underestimation of hourly precipitation intensities (Prein et al 2013; Ban et al 2014) and overestimation of events of low-

precipitation frequency (Berg et al., 2013).  Therefore, increasing the resolution of regional climate models enables to 

explicitly represent process, which otherwise would be parametrized. Nevertheless, process level understandings and 

investigations are still required to fill knowledge gaps, improving current climate representation and future climate 

projections. Recently, a new set of simulations, the so-called convective permitting simulations (CP simulations) started 

to be devised, in hope of addressing some of these issues. Towards this end, the capabilities of RCMs have been extended 

to the CP scales, where convective parametrizations are able to be switched off (Weisman et al 1997), allowing a better 

assessment of the local climate, at an unprecedent high resolution. However, these CP simulations still needs information 

from large scale circulations, which are obtained from state-of-the-art GCMs.  

Historically, a number of small-scale CP simulations have been performed (e.g. Benoit et al., 2002; Milovac et al., 2016; 

Schwitalla et al., 2017), in which have shown added value, due to resolving explicitly convective processes. Besides the 

improvement of CP simulations regarding the ability to explicitly resolve deep convection, a more detailed representation 

of land features is extremely beneficial in mountainous regions and areas of heterogeneous surfaces, such as the 

boundaries between coastal areas and urban to rural regions (Prein et al., 2013; 2015). Also, CP simulations have enabled 

a better assessment of weather extremes related to precipitation and to complex interactions with the orography (e.g. 

Weisman et al., 1997; Grell et al., 2000; Ducroq et al., 2002, 2008; Mass et al., 2002; Done et al., 2004; Davies et al., 

2006, Khodayar et al., 2016; Pontoppidan et al., 2017). Besides these benefits, CP simulations also allow the study of fine 

scale aerosol-cloud-precipitation (Heinzeller et al., 2016), soil-moisture-precipitation (Hohenegger et al., 2016) and soil 

moisture-temperature (Argüeso et al. 2014) interactions. However, some limitations still arise for the CP simulations. For 

example, the shallow convection is not explicitly solved at these km scales (Soares et al., 2004; Khairoutinov and Randall 

et al 2006; Siebesma et al., 2007), which is critical in providing energy in moisture from the planetary boundary layer to 

the free atmosphere, which in turn sustains the development of deep convection (Holloway ad Neelin, 2009).  

The increase in computational power over the years and the model’s shortcomings regarding physical parametrizations 

of sub-grid processes motivated several modelling exercises at the CP scales (e.g. Ban et al., 2014). The reasoning behing 

the current proposal is to contribute with two simulations for an Alpine and a Iberian domains for the Flagship pilot study: 

“Convective phenomena at high resolution over Europe and the Mediterranean”, which is an initiative supported by the 

WCRP CORDEX and GEWEX-GASS international program. 

 

Workplan 

The work will be organized into 6 tasks. For the first 3 tasks, a domain centred over the Alps will be considered and for 

the last 3 task another domain, centred over the Iberian Peninsula, will be contemplated. The purpose of the tasks is to 

perform the CP simulations, to evaluate the model performance in current climate and to assess the evolution of climate 

extremes in future climate, for the domains.  

Task 1. In this first task the WRF (Weather Research and Forecast) model set-up will be developed performing a set of 

sensitivity runs. Afterwards the WRF-CP model will be run for the Alpine domain. The RCM model will be forced by 

the ERA-Interim reanalysis. For this simulation, two nested domains are considered: a mother domain at 15 Km resolution 

and a son high-resolution domain at 3Km resolution. On the highest resolution domain, the convection parametrizations 

will be switched off. 

Task 2. For this task, the setup from the previous task is considered, however the WRF model is forced by the EC-Earth 

GCM for a historical period (CMIP5). 

Task 3. In this third task, the same domain will be pursued but for a future period and therefore the WRF-CP model will 

be forced by the EC-Earth GCM results for the 21st century. 

Task 4. In this fourth task the WRF model will be set-up for the Iberian Peninsula domain. In this case, the RCM model 

is forced by the recently available ERA5 reanalysis. For this simulation, two domains are considered: a larger domain at 

15 Km resolution and a nested high-resolution domain at 3Km resolution. On the highest resolution domain, the 

convection parametrizations will be switched off. 

Task 5. For this task, maintaining the setup from the previous task, the WRF model will be forced by the CMIP6 version 

of the EC-Earth GCM for a historical period. 

Task 6. In this final task, with the same domain considerations from the previous two task, the WRF model will again be 

forced by the CMIP6 EC-Earth GCM, but for a future period. 
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Resources 

The resources for each task are similar: 

• A total of 11 years simulation per task. 

• Approximately 4.750.000 SBU per task 

• Approximately 4.9TB of data will be generated for each year of each task. 

Two task per year will be performed, totalizing 9.500.000 SBUs each year. The storage will be managed to only keep the 

output of these simulations while temporary testing and extra output will be removed after the analysis. 
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