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Summary of project objectives (10 lines max) 
Investigate the applications of reduced numerical precision and reduced numerical precision hardware 
to improving the performance of weather and climate modelling. Reduced numerical precision is 
being increasingly supported by new hardware, in particular GPUs and similar machine learning 
devices. This hardware offers significantly increased performance if the numerical precision errors 
can be kept below forecast errors and uncertainty. Machine learning itself offers another approach to 
accelerate weather forecasting, whereby algorithms can be emulated at reduced cost using a machine 
learning algorithms (e.g. neural networks). We explore the tolerance of kernels of weather and climate 
forecasting to reduce precision calculations or to emulation by neural networks. 

 
 
 
Summary of problems encountered (10 lines max) 

No notable problems were encountered in this year of the project. 
 
Summary of plans for the continuation of the project (10 lines max) 
On reduced numerical precision, we have started an assessment on the performance of radiation 
schemes, thus far in offline testing. We will continue this research by coupling the reduced precision 
radiation schemes to IFS and testing the online forecast skill. We also plan to explore the use of 
reduced numerical precision in data communication, specifically the MPI communications used to 
parallelise weather and climate forecasting systems across many computer nodes. On machine 
learning emulation, we will build upon the successes in gravity wave drag emulation and explore the 
emulation of other physical processes, particularly those that are key to climate forecasting.  
 
 

List of publications/reports from the project with complete references 
Chantry, Hatfield, Duben, Polichtchouk & Palmer, Machine learning emulation of gravity wave drag 
in numerical weather forecasting, submitted to JAMES, https://arxiv.org/abs/2101.08195 
Hatfield, Chantry, Duben, Lopez, Geer & Palmer, Neural networks as the building blocks for tangent-
linear and adjoint models in variational data assimilation, submitted to JAMES, 
https://www.essoar.org/doi/10.1002/essoar.10506310.1  

 
 
Summary of results 
 
Our use of special project this year has been focused on the emulation of physical parameterisation 
schemes to accelerate weather forecasting. The goal is to accelerate said schemes without degrading 
forecast quality. We will now briefly summarise the results of two submitted papers that cover the 
research in the project.  
 
In the first paper, Chantry et al. 2021 (currently under review), we use neural networks to emulate 
the non-orographic gravity wave drag scheme within ECMWF¶s IFS model. To achieve this, we 
generate a dataset of the tendencies produced by the existing gravity wave drag scheme and train 
neural networks to emulate the tendencies given the current state of the atmosphere. Here we find 
that the ability to emulate the existing scheme offline (i.e. decoupled from the IFS) increases as the 
degrees of freedom within the neural network increases (see figure 1 in Chantry et al. 2021). Offline 
testing is key for training neural networks, but provides an unreliable guide for online performance, 
particularly for long integrations (Brenowitz et al. 2020). Therefore, a second phase of testing is 
required, where the emulator is coupled to the forecasting system. 
To thoroughly test our neural network emulators while coupled to the IFS we undertook a range of 
forecasting problems, ranging from medium range to multi-year timescales, at a range of different 
spatial resolutions. These were run using the resources on this special project. Through this testing 
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phase we were able to find a stable configuration that produces accurate forecasts on all timescales. 
In figure 4 of Chantry et al. we show that our networks are neutral compared with the current 
gravity wave drag scheme when assessed against the analysis. In figure 5 we show that in a series of 
long range forecasts our neural network model is able to recreate the behaviour of the QBO. These 
results show the ability of our neural networks to accurate predict tendencies with no persistent bias 
or flaw.  
 
Our purpose for creating neural network emulators was to accelerate uncertain areas of 
parameterised physics. Using special project resources, we assessed the computational cost of our 
networks when coupled to the IFS. Currently we find that our emulators take comparable solution 
time to the existing scheme but find that large accelerations are possible if the hardware 
infrastructure included GPU devices. Both the existing scheme and our neural network emulators 
perform much slower when coupled to IFS, suggesting that data movement is a dominant cost in the 
calculation. Moving parameterisation schemes to dedicated GPU devices might alleviate this issue 
if sufficiently many parameterisation schemes can be emulated. Further work is required to 
understand and optimise performance. 
 
In our second paper, Hatfield et al 2021 (under review), we build on the above work to test our 
neural network emulators within data assimilation. At ECMWF (and many other forecasting 
centres) 4D-var is the data assimilation framework of choice. In this framework an optimal initial 
condition is found through a minimisation procedure. This procedure propagates increments to the 
atmospheric state forward in time through a tangent-linear equivalent of the IFS code, and then 
propagates gradients backwards through an adjoint of the IFS code. This requires the maintenance 
of two additional versions of the forecasting model, with additional care required to remove large 
gradients (Janisková & Lopez 2013). With a neural network emulator, building tangent linear and 
adjoint equivalents of the nonlinear scheme is very easy as the complexity lies not within the 
equations but the weights of the neural network. We test a neural network trained on the nonlinear 
versions of the non-orographic gravity wave drag scheme to produce accurate and stable tangent-
linear and adjoint variants. We find that our tangent-linear and adjoint codes can be stably used 
within the full 4D-var data assimilation framework over many continuous cycles of assimilation. 
There is no notable degradation in the accuracy of forecasts that use our neural networks for the 
tangent and adjoint calculations. 
 
Key to both of these papers will be building upon the results across a suite of parameterisation 
schemes. In particular the non-orographic gravity wave scheme is not the most expensive or 
impactful scheme. Therefore, testing these approaches in schemes such as radiation or cloud 
microphysics will provide great insight into the possibility of a predominately neural network 
parameterisation suite. 
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