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Complex numerical models of weather/climate dynamics eg. ‘IFS’ developed by ECMWF, are
used to predict the weather for days or climate for hundreds of years. These predictions are used by
the general public to plan holidays, by farmers for seasonal farming activity, or to assess the effects
of global warming on e.g coastal areas of Bengal.

In these simulator models of the Earth-system, the differential equations describing the dynamics
of the atmosphere and the coupling to the other components (land, oceans), are integrated over a
grid with some spatial resolution and over discrete timesteps. However, many physical processes
operate at a smaller space (or time) scale than the considered grid, and their effect on the dynamics
of the larger scale has to be taken into account. This is called parametrization. At each step of the
integration, the effect of sub-grid processes is determined and the corresponding correction (usually
referred to as tendencies) to the large scale atmosphere prognostic variables is computed. The most
straightforward way of doing this is expressing the sub-grid processes as a deterministic function of
the large scale state variables; however, this does not lead to satisfactory results, for the following
reasons [6]. First of all, the presence of power-law behaviour has been observed in the atmosphere
and this, together with the scale invariance of the solutions of the Navier-Stokes equations, prevents
the definition of a clear-cut scale separation. In fact, scaling arguments can be used to show that, even
with a very high resolution, due to the power law behaviour errors at small scale can contaminate
the larger scales in finite time. Moreover, a given large-scale state does not uniquely correspond to
a single sub-grid configuration. Therefore, choosing a deterministic parametrization means inserting
errors in the system, the fact that these errors can grow quickly may lead to diverging evolution of the
system, and no diagnosis of this is possible a priori, nor is possible a quantification of the confidence.

Stochastic parametrization of NWP and Calibration A setting offering a solution to this prob-
lem is the following: consider an ensemble of simulations, and randomly perturb the computation
of the sub-grid processes with different random numbers in the different ensemble members. In this
way, each ensemble member represents a possible realization of the sub-grid process, and the spread
of the ensemble can be used to provide an estimate of the accuracy of the prediction. The opera-
tional ECMWF weather and climate simulators include the Stochastically Perturbed Parametrization
Tendency (SPPT) scheme [12], that inserts stochasticity directly at the tendencies level. Specifically,
after the tendencies have been computed, a multiplicative noise is added in order to represent un-
certainty. This noise is correlated in space and time according to some carefully chosen scales and
is the same for each prognostic variable and in each vertical column of the simulation, in order to
preserve the vertical profile of the tendency. Experimentally, SPPT has been proven to improve the
probabilistic forecast skills of the ensemble simulator. However, as it is a “bolt-on” to the deter-
ministic parametrization schemes, it presents some problems: first, the the correlation and intensity
parameters for the perturbations are not known; secondly, it leads to some physical inconsistencies of
the model, that have to be treated ad hoc. To solve the second issue, another approach the Stochasti-
cally Perturbed Parametrizations (SPP) scheme [5] is right now under development. In this scheme,
uncertainty is inserted at the model level, namely by perturbing the uncertain physical parameters
that define the sub-grid processes. In this way, physical consistency is preserved. Up to now, this
scheme has not reached the same capabilities as SPPT, but research is still going on. However, note
that this does not solve the problem of fixing the perturbation parameters, as the random perturbation
still follows a space-time pattern with some intensity and correlation scale.

These parameters of SPP and SPPT, described above are presently hand-tuned, which may cause
unreliable weather forecasting, more evidently in the zones with fewer observations eg. in the trop-
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ics. In this project, we will specifically consider the challenging case of weather prediction in the
tropics, trying to improve it by rigorously learning these parameters in a data-driven manner using
approximate Bayesian computation [3]. For this the real weather observation data will be provided
by ECMWF, while for the tropics we will use a dataset collected by ‘Laboratoire de météorologie
dynamique, France’ (Concordiasi).

Approximate Bayesian computation to estimate parameters of SPP/SPPT: Bayesian inference
schemes for NWP crucially depends on our ability to draw samples from the posterior distribution of
parameters of the mechanistic models (θ ) given the observed data x0, denoted as p(θ |x0), which is not
known due to the unavailability of the likelihood function of θ for the models. The fundamental rejec-
tion Approximate Bayesian computation (ABC) offers a way to overcome this problem, by sampling
from an approximate posterior distribution. To sample from this, we first sample θ ∗ from the prior
distribution π(θ) and then simulate xsim from the NWP model M (θ ∗) using θ ∗ and finally accepting
or rejecting θ ∗ depending on the probability Kγ(d(xsim,x0)), where Kγ(d(xsim,x0)) is a probabil-
ity density function with a large concentration of mass near x0, γ is a threshold and d(xsim,x0) is a
chosen metric on the dataspace. Finally, in all of the ABC algorithms sampling from the approximate
posterior distribution, we decrease γ → 0 at each generations of the chosen sequential algorithm, to
improve the approximation and hence being able to approximately sample from the true posterior
distribution. Although the choice of d(xsim,x0) for ABC is a difficult task and becomes crucial for
the present problem as the dataset is of spatio-temporal nature containing several weather variables.

Distance learning for ABC: As for NWP model, we are only interested in inference of the pa-
rameters, we may want to learn the distance on data space by inducing the geometry in param-
eter space on data space. To do so, we first simulate n data sets {x1, . . . ,xn} from n parameters
{θ1, . . . ,θn}, respectively, which are randomly sampled from prior distribution. We can capture the
geometry in the parameter space, through two sets of pairwise similarity and dissimilarity constraints,
S= {(xi,x j)|xi and x j are similar} and D= {(xi,x j)|xi and x j are dissimilar}, where xi and x j are con-
sidered similar if dE(θi,θ j) < ε and dissimilar otherwise for some ε > 0. A Mahalonabis distance
between x1 and x2, dM(x1,x2) = (x1− x2)

T M(x1− x2), where M is a d×d positive semi-definite ma-
trix, under the above similarity and dissimilarity constraints, can be learned by finding M satisfying:

min
M

[
n

∑
i, j=1

(
xT

i Mxi− xT
i Mx j

)
Ki j

]
, s.t. M ≥ 0 and Kx

i, j =

{
+1, if (xi,xi) ∈ S
−1, if (xi,xi) ∈ D.

Existing metric learning methods can be divided into two categories: linear metric learning methods
to learn Mahalanobis distance as above and nonlinear methods applying kernel tricks [11] or deep
neural networks to model higher-order correlations. In this project, our focus will be on deep metric
learning (DML) which combines the ability of deep learning to learn nonlinear feature representation
and discrimination power of metric [9, 10] and is the state-of-the-art. We plan to use DML algo-
rithms using convolutional neural networks (CNNs) [13], multilayer perceptron or a deep adversarial
framework [1]. We will highlight here that we are proposing DML to learn the distances for ABC
rather than purely using deep learning for prediction. This enables us to bring together the best of
two worlds: deep data-driven learning of nonlinear maps and scientific models based on physical
principles, providing a novel framework to combine machine learning and natural sciences.

We should note that the similarity and dissimilarity illustrated in the simple example above is
defined using contrastive loss between pairs of data points. In this project, we will also explore losses
using more than two data points for DML, eg. triplet loss [11, 7], N-pairs loss [8], facility location
framework [4], angular loss [10] etc, and develop new losses capturing the geometry better for the
improvement of the the inferential performance of ABC.

3



ABCpy: HPC-driven Python package for ABC For this project we will use a Python package
called ABCpy developed by the PI with the help of Swiss National Supercomputing Centre (CSCS).
This Python package needs MPI for parallelization/nested-parallelization. Further information about
this software can be found in https://github.com/eth-cscs/abcpy. ABCpy implements the most ad-
vanced ABC algorithms and optimally utilizes high performance computing (HPC) facilities. The
ABC algorithms in ABCpy are sequential algorithms, for which the jobs at each of the sequence is
parallelized. The computational cost of ABC algorithms depend on three multiplication factors, (a)
simulation time of simulator model, (b) iteration steps, (c) sample points. At each iteration step, we
need to simulate from the ‘simulator model’ for ‘sample point’ many times. Now, if the simulator
model takes more than 30 miliseconds for one simulation, then the algorithm scales almost linearly
upto ‘sample points’ many core, if each simulation is done on a core (This happens as we need to
simulate sample points many simulations and we do them at each core). In figure 1, I consider two
models with 12 seconds and 2 minute simulation time correspondingly, iteration steps = 2 and sample
point =5000. This is a very simplified example used to illustrate that we get a linear speedup for
expensive simulator model and a reasonable speedup for the cheaper model. Further speedup studies
with the first model (simulation time 12 secs), can be found in [2].

Figure 1: Speed-up of ABCpy

Requested resources In this project proposal we consider NWP model implemented in openIFS
for which the simulation time is 30 minutes and more, the iteration steps would be 10-20 and sample
points should be between 10000-50000. Hence we expect to have linear speedups in this case upto
number of cores equal to the sample points. We can also further parallelize our simulation model
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openIFS using 24 cores of a node. Then we will get a linear speed upto sample point many nodes,
using nested parallelization scheme of ABCpy. Based on these parameters, we expect to run yearly 5
big jobs (50 nodes for 24 hours) and 50 small jobs (10 nodes for 5 hours) totalling to 6 million SBUs.
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