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Summary of project objectives (10 lines max) 
The overarching goal of this project is to come to a better understanding of cloud-climate feedbacks, 
leading to reduced uncertainty in climate sensitivity estimates. To achieve this, we pursue a 
computational strategy of developing 3-dimensional superparameterization (3dSP) by embedding 3-d 
convection-resolving Large Eddy Simulation (LES) models in each grid column of a global model 
(OpenIFS). The LES models are embedded as a two-way nesting (or two-way coupling): the global 
model column state drives the LES model, and the LES feeds back to the global model. The nested 
LES models replace traditional convection parameterization schemes in the global model columns. 
We work with DALES, the Dutch Large Eddy Simulation model, as the convection-resolving LES. 
The computer resources of this special project are intended for performing simulations with the 
coupled (OpenIFS-DALES) 3dSP model for test cases including a cold air outbreak case (previously 
subject of the WGNE Grey Zone project). 
 
 
 
Summary of problems encountered (10 lines max) 
In 2017 we found out that AMUSE does not work well with the Cray MPI which is installed on the 
ECMWF Cray, the reason being that when AMUSE spawns worker processes it launches them using 
MPI_Comm_spawn(), which the Cray MPI does not support. We solved this problem with a work- 
around where all workers are launched at the start of the simulation in a regular MPI job, after which 
the appropriate MPI communicators are created. This works for us, since we know ahead of time how 
many workers are needed for a particular simulation. Supposedly new versions of the Cray MPI will 
include MPI_Comm_spawn(). We are still using the work-around with pre-launched worker codes. 
 
 
 
Summary of plans for the continuation of the project (10 lines max) 
- Analyze and improve the performance of the coupled model. 
- The Python interface to the DALES (LES-based, local, cloud-resolving model) will be presented as 
a software paper, and is going to be used in teaching, for interactive control of the DALES model. 
- Beyond the current project, the superparameterized OpenIFS-model will be used as a one example 
application in a project on multiscale modelling (VECMA).  
- Investigate how the model coupling scheme can be improved, in particular to account for variability 
on scales smaller than the global model’s grid size, which affects advection of clouds from one 
superparameterized grid point to another.  
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Summary of results 
 
Progress July 2018 – June 2019 
 
A comprehensive article describing the superparameterization setup and initial results has been 
submitted to JAMES and is currently under revision. The submitted preprint is attached to this report. 
We quote its abstract below: 
 
“As an explorative step towards global Large Eddy Simulations, we investigate using comprehensive 
three dimensional Large Eddy Simulations as a superparameterization that can replace all traditional 
parameterizations of atmospheric processes that are currently used in global models. We present the 
technical design for a replacement of the parameterization for clouds, convection, and turbulence of 
the global atmospheric model of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) by the Dutch Atmospheric Large Eddy Simulation (DALES) model. The model coupling 
consists of bidirectional data exchange between the global model and the high-resolution Large Eddy 
Simulation (LES) models embedded within the columns of the global model. Our setup allows for 
selective superparameterization, i.e. for applying superparameterization in local regions selected by 
the user, whilst keeping the standard parameterization of the global model intact outside this region. 
Our design allows the LES instances to run concurrently. First simulation results, employing this 
design, demonstrate the potential of our approach”. [from Jansson et al., 2019] 
 
The code for the coupling of OpenIFS and DALES is made available on GitHub, details can be found 
in the article. Also, the separate Python interfaces to OpenIFS and to DALES have been included in 
the official OMUSE repository. 
 
Furthermore, many bug fixes and improvements for DALES developed in this project have been 
included in the newly released DALES 4.2. 
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Key Points:11

• Efficient Implementation of a Large Eddy Simulation (LES) based superparam-12

eterization into a global circulation model.13

• Flexibility on the position and the size of the superparameterized area.14

• Promising evaluation of the first results of an LES-based superparameterized sim-15

ulation.16

Corresponding author: Fredrik Jansson, jansson@cwi.nl

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract17

As an explorative step towards global Large Eddy Simulations, we investigate using com-18

prehensive three dimensional Large Eddy Simulations as a superparameterization that19

can replace all traditional parameterizations of atmospheric processes that are currently20

used in global models. We present the technical design for a replacement of the param-21

eterization for clouds, convection, and turbulence of the global atmospheric model of the22

European Centre for Medium-Range Weather Forecasts (ECMWF) by the Dutch At-23

mospheric Large Eddy Simulation (DALES) model. The model coupling consists of bidi-24

rectional data exchange between the global model and the high-resolution Large Eddy25

Simulation (LES) models embedded within the columns of the global model. Our setup26

allows for selective superparameterization, i.e. for applying superparameterization in lo-27

cal regions selected by the user, whilst keeping the standard parameterization of the global28

model intact outside this region. Our design allows the LES instances to run concurrently.29

First simulation results, employing this design, demonstrate the potential of our approach.30

1 Introduction31

An accurate representation of clouds and convection in global weather and climate32

models and their interaction with the large-scale circulation remains one of the main chal-33

lenges in atmospheric modeling. Uncertainties in the representation of clouds and con-34

vection are the prime sources of uncertainty in climate model sensitivity, and major con-35

tributors to longstanding biases in the representation of the precipitation patterns in cur-36

rent climate and their projections in future climate (Bony et al., 2015; Schneider, Teix-37

eira, et al., 2017).38

Cloud related processes occur over a wide range of scales ranging from cloud droplet39

formation at the micrometer scale to cloud convective updrafts and downdrafts that can40

be as large as 10 km, from which organized mesoscale systems can emerge extending over41

hundreds of kilometers. Current operational global models operate at numerical reso-42

lutions in the range of 10-100 km. As a consequence, cloud and convective processes are43

numerically not resolved and their impact on the resolved state is instead approximated44

by parameterizations, causing uncertainties of these unresolved processes.45

The problem of parameterized clouds and convection is largely avoided when us-46

ing Large Eddy Simulations (LES). The paradigm of LES is based on the idea that small47

unresolved turbulent eddies can be faithfully parameterized in terms of the resolved large48

eddies by making use of the self-similar structure of turbulence in the inertial subrange.49

The atmospheric inertial subrange is bounded by the depth of the atmospheric bound-50

ary layer which has a typical depth of 1 kilometer, indicating that a minimum resolu-51

tion of O(100 m) is required to numerically resolve the relevant turbulence, convection,52

and cloud dynamics.53

Two obvious but challenging pathways for improving the representation of clouds54

and convection in global models are either increasing the resolution of existing global mod-55

els to turbulence-resolving scales, or extending the spatial domains of Large Eddy Sim-56

ulations until a global scale is reached. Regarding the latter approach, realistic multi-57

day large eddy simulations have been reported on domains approaching 1000 km2 (Schalkwijk58

et al., 2015; Heinze et al., 2017). Global multiday simulations are approaching the 1 kilo-59

meter resolution scale and are capable of partly resolving the cloud dynamics and there-60

fore usually referred to as global cloud resolving models (CRMs) (Miyamoto et al., 2013;61

Bretherton & Khairoutdinov, 2015). Global CRMs form a interesting playground to ex-62

plore the interaction between the global circulation and the resolved moist convective63

systems, but one should also bear in mind that for resolutions used in global CRMs (1-64

5km), atmospheric turbulence and boundary layer clouds remain essentially unresolved.65
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A different pathway is offered by superparameterization (SP) (Grabowski & Smo-66

larkiewicz, 1999; Grabowski, 2001, 2004; Khairoutdinov & Randall, 2001; Khairoutdi-67

nov et al., 2005), where existing global and local cloud resolving models are coupled. The68

common set-up for SP is to replace deep convection and cloud parameterization schemes69

in every model column of the global model by a CRM. Because of computational con-70

straints, the CRMs used in SP are mostly two-dimensional (2D). A 3D CRM was used71

by Khairoutdinov et al. (2005), but the grid of the CRM was still very coarse and lim-72

ited to 8×8 columns. Jung and Arakawa (2010) present a quasi-3D SP where the global73

models grid points are connected by narrow corridors consisting of 3D local models. An74

overview of other simulation studies with SP is provided by Tao and Chern (2017). Like75

global CRMs however, these SP approaches traditionally use horizontal resolution of 1-76

4 km and coarse vertical resolutions, and still require additional parameterizations for77

boundary layer clouds and turbulence.78

Recently, a variation on superparameterization has been proposed (Grabowski, 2016),79

where the resolution of local CRMs becomes fine enough to be turbulence resolving. Parishani,80

Pritchard, Bretherton, Wyant, and Khairoutdinov (2017) included LES models with a81

fine spatial horizontal resolution (250m) and 125 vertical levels in their global model. How-82

ever, to be able to run the global model with SP, the LESs used small domains (8×883

columns, i.e. 2 km × 2 km) covering only a small fraction of the domain of a single col-84

umn of the global model.85

Ideally, SP is carried out with a 3D high-resolution CRM that covers the full do-86

main of each global model column. To reduce the enormous computational cost of this87

(hypothetical) SP set-up, in the studies mentioned above either the 3D CRM is simpli-88

fied to 2D or quasi-3D, or the grid of each CRM is kept small (e.g. 8 × 8 horizontal).89

In the latter case, one can choose between high resolution on a small CRM domain (Parishani90

et al., 2017), or coarser resolution on a larger CRM domain (Khairoutdinov et al., 2005).91

The SP approach that we will present in this study is different. Our aim is to use92

turbulence resolving resolutions on sufficiently large 3D-domains as a SP, in accordance93

with the resolution of the large-scale model. Computationally, this approach obviously94

does not allow SP to be applied globally. Therefore, rather than reducing the cost of the95

3D CRM as sketched above, our set-up creates the possibility to use SP only in a selected96

region, while leaving the regular (non-SP) parameterization in use outside this region.97

The motivation for this approach is simply that using 3D LES as a SP provides the best98

benchmark for conventional parameterizations.99

The benefits of such a 3D LES-based SP in a conventional hydrostatic global model100

over a global LES or CRM have been discussed in Grabowski (2016). Computationally,101

it is attractive since all the local models can run independent from each other and only102

have to exchange mean profiles with the large-scale model. This allows an efficient im-103

plementation on massively parallel computer systems since all the SP models can run104

independently on separate cores. Further acceleration can be achieved by running the105

SP models sparser in space and time (Xing et al., 2009) or by varying the vertical res-106

olution of the SP models depending on cloud types that they need to resolve (Marchand107

& Ackerman, 2011). Conceptually there is also the advantage that the large-scale model108

can be formulated efficiently in a hydrostatic manner while the smaller scale LES based109

SP models can be conveniently expressed in an anelastic formulation. This way there110

is no need to find an appropriate soundproof compressible formulation of the dynamics111

on a global scale.112

The drawback of any SP formulation is that it introduces a scale break at the res-113

olution scale of the large-scale model. This hinders the spectral transfer of variability114

across this scale and will potentially influence mesoscale organization. However, it also115

offers an excellent opportunity to explore the effect of such a scale break which is present116

in every operational large-scale model.117
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Figure 1. Overview of the superparameterized model. Some grid columns of the global model

OpenIFS (purple), are selected for superparameterization. Each of them is coupled to a local

DALES model (blue), which resolves clouds and convection in three dimension. The tendencies

generated by these processes are fed back to the global model.
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In this paper we will discuss the implementation and performance of the Dutch At-118

mospheric Large Eddy Simulation (DALES) model as a regional 3D LES based super-119

parameterization into the Open Integrated Forecast System (OpenIFS) developed at the120

European Centre for Medium-Range Weather Forecasts (ECMWF) (Carver & Vana, 2017).121

Section 2 describes the complete methodology of the coupling while Section 3 concen-122

trates more on the technical implementation. Section 4 presents results of a superparam-123

eterized atmospheric simulations over the Netherlands, comparisons with observations124

and an evaluation of the numerical performance. Section 5 contains conclusions, discus-125

sion, and outlook.126

2 Methods127

For coupling the global and cloud-resolving models, we follow the approach pre-132

sented by Grabowski (2004) and also (Khairoutdinov & Randall, 2001; Khairoutdinov133

et al., 2005). In the grid columns of the global model which are selected for superparam-134

eterization, a local, Large Eddy Simulation (LES) model is embedded as shown in Fig.135

1. The general idea is that for each coupled quantity, a forcing is introduced, which keeps136

the states of the two models consistent with each other. The coupling is bi-directional,137

so that the effects of clouds, turbulence and convection which are resolved in the local138

model are fed back to the global model.139

Below, we summarize the coupling procedure, first in a simplified case where the140

two models are assumed to have similar vertical grid levels and to be formulated in terms141

of the same quantities. We then discuss the adaptations needed to couple models with142

different vertical levels and different physical quantities, as is the case for our set-up with143

coupling between DALES and OpenIFS.144
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2.1 Physical coupling of the models145

We consider a 3D small-scale model embedded in a single column of the large-scale146

model. In earlier versions of the superparameterization scheme (Grabowski & Smolarkiewicz,147

1999; Grabowski, 2001), the states of the large-scale and the small-scale models are re-148

laxed towards each other, with a freely chosen time constant, which was taken as one149

hour. In the later scheme (Grabowski, 2004), the relaxation time constant is chosen equal150

to the time step of the large-scale model, making the models more tightly coupled. The151

aim is that for any coupled quantity Q, the horizontal slab average in the small-scale model152

at height z matches the value at the same height in the large-scale model:153

Q(Z = z, t) = 〈q(x, y, z, t)〉. (1)

Capital letters denote quantities in the large-scale model, lower-case letters denote the154

small-scale model. Q and q here may represent any of the prognostic variables, and the155

brackets 〈.〉 denote a horizontal slab average over the domain of the local model. In the156

appendix we analyze to what extent the desired equality (1) can be achieved with the157

scheme from (Grabowski, 2004).158

The coupled variables generally include the horizontal wind velocities, the temper-159

ature, and the specific humidity. As in earlier superparameterization works, the verti-160

cal velocities are left uncoupled. Since each local model is a closed system due to peri-161

odic boundary conditions, the horizontal average of the vertical velocity is zero.162

The models are coupled by introducing additional forcings in both models, i.e. ad-163

ditional contributions to the time derivatives of the coupled quantities. FQ represents164

a forcing that stems from q and acts on Q in the large-scale model, while fq represents165

a forcing stemming from Q and acting on q in the small-scale model.166

The time-stepping procedure is as follows. The large-scale model performs a sin-167

gle time step from time T to T+∆T , then the small-scale model is evolved over the same168

time interval, in multiple steps of length ∆t. Before the time evolution of each model,169

forcings are calculated based on the difference between the most recently obtained states170

of the two models.171

(i) Given the state of both models at time T , represented by Q(T ) and q(T ), calcu-172

late forcings on the large-scale model173

FQ(T ) =
〈q(T )〉 −Q(T )

∆T
. (2)

(ii) Time-step the large-scale model174

Q(T + ∆T ) = Q(T ) + ∆T
[
AQ(T ) + SQ(T ) + FQ(T )

]
, (3)

where AQ(T ) represents advection terms and SQ(T ) represents source terms dur-175

ing the step from T to T + ∆T .176

(iii) Calculate the forcing on the small-scale model177

fq(T ) =
Q(T + ∆T )− 〈q(T )〉

∆T
. (4)

(iv) Time-step the small-scale model178

q(T + ∆T ) = q(T ) +

T+∆T∑
t=T

∆t
[
aq(t) + sq(t) + fq(T )

]
. (5)

The sums over t here schematically represent evolving the small-scale model over179

several time steps, with aq(t) denoting advection terms and sq(t) denoting source180

terms in the small-scale model.181
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This choice of forcings is such that they couple the advection and source terms between182

the models, see also Grabowski (2004). In particular, one can show that183

FQ(T + ∆T ) =
1

∆T

T+∆T∑
t=T

∆t〈aq(t) + sq(t)〉, (6)

and184

fq(T ) = AQ(T ) + SQ(T ), (7)

so that the forcings on the small-scale model equals the advective and source tendencies185

in the large-scale model and vice versa. Thus, each physical process should be taken into186

account in one of the models, but not in both. Otherwise the contribution will be counted187

twice. As is shown in the appendix, the equality (1) is satisfied exactly if all physical pro-188

cesses are accounted for in one model and none in the other: if 〈aq(t) + sq(t)〉 = 0 for189

all t then Q(T ) = 〈q(T )〉, whereas if AQ(T ) + SQ(T ) = 0 then Q(T + ∆T ) = 〈q(t)〉.190

The Grabowski scheme does not explicitly describe the superparameterization pro-191

cedure for the sequential-splitting method in the global model, which are used in the col-192

umn physics routines in OpenIFS. In this algorithm the physics processes are ordered193

by decreasing time scales and every tendency is calculated with updated fields as its in-194

put, so that the tendencies of slower processes contribute to the evaluation of tenden-195

cies due to faster processes. We preserve this procedure by inserting the coupling to the196

local models at the stage in the OpenIFS time step where the parameterizations we sub-197

stitute are evaluated, namely turbulence, convection and cloud schemes as shown in Fig.198

2.199

2.2 Interpolation and change of variables200

The coupling scheme outlined so far is the standard superparameterization scheme201

as described in the references - where the vertical grids are assumed to be the same in202

the two models, and the models are formulated in the same variables. In our case of cou-203

pling OpenIFS and DALES, neither of these assumptions can be made, requiring a few204

extra steps in the model coupling. The two models may use different vertical grids, typ-205

ically the local model has a denser grid than the global model, and will not extend be-206

yond the tropopause. OpenIFS is formulated in so-called hybrid sigma pressure coor-207

dinates; in our test cases we used 90 vertical levels extending up to roughly 80 km. For208

DALES we typically used a vertical spacing of 25 m, extending up to 4 km. To exchange209

vertical profiles of quantities between global and the local models we use linear interpo-210

lation along the z-axis. We convert the OpenIFS hybrid model level profiles to altitude211

by fetching the full- and half-level pressure profiles Pf , Ph and using the hydrostatic ap-212

proximation to determine the height of each layer:213

dZ =
−RdT

[
1 + (Rv/Rd − 1)QV − (QL +QI)

]
g0Pf

dP. (8)

Here, Rd ≈ 287.04 J/kg K is the gas constant for dry air, Rv ≈ 461.5 J/kg K is the214

gas constant for water vapor, and g0 is the acceleration due to gravity. QV is the wa-215

ter vapor specific humidity, while QL and QI are the specific humidities of liquid water216

and ice. Above the vertical extent of the DALES models we set the forcings FQ on the217

global model to zero.218

Furthermore, the two models are formulated using different prognostic variables.221

The coupling thus requires a variable conversion step. Table 1 lists the quantities that222

are coupled between the two models, the conversions required are described in detail be-223

low.224

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

OpenIFS quantities
symbol internal array name description unit coupling direction

U, V GMV horizontal velocity m/s bidirectional
T GMV temperature K bidirectional
QV GFL water vapor specific humidity kg/kg bidirectional*
QL GFL liquid water specific humidity kg/kg bidirectional*
QI GFL ice water specific humidity kg/kg bidirectional*
Z0M , Z0H ZAZ0M, ZAZ0H surface roughness m output
FSH PDIFTQ specific humidity flux kg/m2s output
FQL PDIFTL liquid water specific humidity flux kg/m2s output
FQI PDIFTI ice specific humidity flux kg/m2s output
FTS PDIFTS sensible heat flux W/m2 output
PS GMVS surface pressure Pa output
A GFL cloud fraction - input

DALES quantities
symbol variable name description unit coupling direction

u, v u0, v0 horizontal velocity m/s bidirectional
θl thl0 liquid water potential temperature K bidirectional
qt qt0 specific humidity kg/kg input
qv water vapor specific humidity kg/kg output
qL liquid water specific humidity kg/kg output
qI ice water specific humidity kg/kg output
Fq wqsurf specific humidity flux kg/kg m/s input
Fθl wtsurf surface heat flux K m/s input
pS surface pressure Pa input
A cloud fraction - output
Table 1. Quantities in OpenIFS and DALES used in the superparameterization scheme. *See

text for the details of the humidity coupling.

219

220

Global transport non-superparametrized
column

super-
parametrized

column

physics 
within column:

radiation
soil
turbulence
convection
clouds

physics 
within column:

radiation
soil

turbulence
convection
clouds

Figure 2. In OpenIFS the column physics schemes for turbulence, convection and clouds are

turned off in the superparameterized columns. These processes are instead handled by DALES.

225

226
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For temperature, OpenIFS uses a regular temperature T , while DALES uses the227

liquid water potential temperature θl (Heus et al., 2010). For the conversion, we use228

θl ≈
T

Π
− L

cpdΠ
qc, (9)

where qc is the cloud condensate defined as the sum of cloud liquid water qL and cloud229

ice qI . The Exner function Π is defined as230

Π(p) =

(
p

p0

)Rd/cpd

. (10)

Here cpd ≈ 1004 J/kg K is the specific heat of dry air at constant pressure.231

For the humidity, DALES uses only a total humidity qt as a prognostic variable.232

At every time step, qt is partitioned into vapor, liquid and ice according to the local tem-233

perature. OpenIFS on the other hand, has separate prognostic variables for these quan-234

tities, QV for water vapor, QL for liquid water and QI for ice. When forcing DALES,235

the total humidity qt is nudged towards the total humidity of the global model, calcu-236

lated as QT = QV +QL+QI . When coupling the humidities back to the global model,237

the diagnosed values of the DALES are used, so that each one of QV , QL, and QI is forced238

towards the horizontal average of the corresponding diagnosed quantity in DALES.239

2.3 Surface scheme240

Both DALES and OpenIFS contain a surface model which accounts for surface drag241

and for fluxes of heat and moisture between the atmosphere and the land or sea surface.242

We have chosen to use fluxes and surface roughness lengths calculated in OpenIFS, while243

letting Dales handle the effects these have on the atmosphere at the superparameterized244

grid points. In this way, we can rely on the land/sea mask, soil and vegetation data, and245

ocean wave model of OpenIFS, making it easy to set up a superparameterization any-246

where without having to supply detailed surface information.247

We achieve this by having DALES run with prescribed roughness lengths and sur-248

face fluxes of moisture and heat. These quantities are retrieved from the OpenIFS at ev-249

ery time step. To avoid double counting of the surface fluxes, we disable the contribu-250

tion of the surface layer scheme in OpenIFS at the superparameterized grid points.251

Since OpenIFS and DALES are built using quantities with different units (see ta-252

ble 1) unit conversions are necessary to consistently couple the surface fluxes. For the253

humidity flux, a scaling with the air density ρ is required:254

Fq = −FQL + FQI + FSH
ρ

. (11)

In the case of the heat flux, a conversion from heating power FTS in OpenIFS to liquid255

water potential temperature flux Fθl in DALES is needed,256

Fθl = − FTS
Π(PS)cpdρ

, (12)

where Π is the Exner function given in Eq. (10). The models also differ in sign conven-257

tions: in DALES positive fluxes are upwards, into the atmosphere, while in OpenIFS pos-258

itive fluxes are downwards.259

The coupling of the surface roughness lengths for momentum and heat provides a260

simple way to account for orographic variations and vegetation for the local models lo-261

cated over land, and for wave height for models above the sea.262
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2.4 Radiation, cloud condensate and cloud fraction263

In our set-up, radiative heating and cooling in the atmosphere is currently handled264

only in the global model. This choice was mainly motivated from computational con-265

siderations as the handling of the radiation by DALES would result in a significant in-266

crease in computing time. DALES has the option to locally run the same radiation scheme267

as OpenIFS, so the option of diverting the radiation scheme to DALES is in principle268

available.269

The cloud fraction A in the global model is derived by calculating the fraction of270

all the columns in DALES that contain a non-zero cloud condensate in the range from271

k1 to k2. In formula, the cloud fraction A in the global model is given by272

A =
1

imaxjmax

imax∑
i=1

jmax∑
j=1

Ik2,k1(i, j) (13)

where i an j are the horizontal grid-indices of DALES, and I is a indicator function which273

takes the value 1 in the case of any cloud condensate in the subcolumn between levels274

k1 and k2 at the horizontal coordinates i and j, and zero otherwise (Neggers et al., 2011).275

This choice for deriving A as a cloud fraction ”defined-by-area”, or projected cloud frac-276

tion is deliberate, because in OpenIFS it is implicitly assumed that clouds do not exhibit277

any subgrid variability within the vertical extent of the layer. Physically this implies that278

in the case where not all vertical levels in a DALES subcolumn are occupied with cloud279

condensate, it is averaged out over this subcolumn.280

2.5 Other modeling choices281

In DALES, the highest 25% of the model levels constitutes a so-called sponge layer282

It removes fluctuations of wind, temperature and humidity, in order to damp gravity waves283

before they can reflect at the model top. The damping increases smoothly from the start284

of the sponge layer to the top of the system. There are several options for the damping285

mechanism. To be compatible with the superparameterization, we use a scheme where286

each quantity is relaxed towards the horizontal average of that quantity. Since this scheme287

preserves the horizontal average, it does not have a strong effect on the global model.288

As in earlier superparameterization schemes, we do not couple the vertical veloc-289

ity w between the two models. Due to the periodic boundary conditions of the local model,290

the horizontal average of 〈w〉 vanishes, which excludes the possibility of an explicit cou-291

pling. The effect of the large-scale vertical velocity on the prognostic fields in the global292

model is of course taken into account by the vertical advection and its effect is felt by293

the local model through the forcing as expressed by Eq. (4). Vice versa, the local model294

influences to thermodynamic state of the large-scale model and thereby indirectly also295

the large-scale vertical velocity within the hydrostatic formulation in a similar fashion296

that conventional convection parameterizations would do.297

2.6 DALES horizontal extent and resolution298

Since superparameterization does not involve lateral boundary forcings and all ex-299

changed profiles involve bulk properties, the horizontal extent of the local models can300

in principle be chosen independently from the OpenIFS grid spacing. The DALES model301

size should be chosen to capture mesoscale structures as much as possible. However, the302

occurrence of such organization very much depends on the interaction with the large-303

scale dynamics and is often difficult to predict. For the horizontal DALES grid spacing304

we use an upper bound around 200 m; beyond this scale the DALES subgrid model can305

no longer accurately account for the unresolved turbulent motions.306
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Figure 3. Organization of the superparameterized simulation code, with a top-level coupling

program communicating with the global model and a number of local model instances through

OMUSE interfaces.
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3 Implementation307

For superparameterization the OpenIFS model needs a bidirectional coupling to308

multiple instances of DALES, each one mapping to a different grid point of the global309

model. The central hypothesis in the design of the superparameterized simulation is that310

the bulk of the computing time in the coupled system is going to be spent during the311

time stepping of the local models. This is primarily because OpenIFS has a coarse grid312

and its numerical scheme allows large time steps, whereas the three-dimensional small-313

scale models are frequently restricted in their time step and thus have to perform many314

iterations to catch up with the global model. Hence it is important to allow the inde-315

pendent DALES instances to run concurrently on separate resources whenever available.316

Previous superparameterization setups have generally embedded the local model320

in the column physics routines of the global model. This approach is feasible when su-321

perparameterization is applied uniformly in all model columns. In this project, we want322

to superparameterize only selected grid columns. Due to the organization of the OpenIFS323

program, it turns out to be difficult to embed DALES in the physics routine of selected324

columns, while letting the DALES instances run in parallel. For this reason, and also325

to keep the setup more modular, we settled on a different organization where the two326

model codes are kept as separate libraries, and an independent coupling program com-327

municates with them. The coupling program is written in Python, and communicates328

with the models, which are written mainly in Fortran, through a framework named OMUSE.329

(Pelupessy et al. (2017), see also S. Portegies Zwart et al. (2009); Pelupessy, F. I. et al.330

(2013); S. F. Portegies Zwart, McMillan, van Elteren, Pelupessy, and de Vries (2013)).331

This setup is illustrated in Fig. 3. In the following sections we explain the modifications332

made in OpenIFS and DALES, the role of the OMUSE framework and the coupling pro-333

gram.334

3.1 Interface to OpenIFS335

For the superparameterization coupler to be able to communicate with OpenIFS,336

a function interface is defined, with functions for initializing the model, setting tenden-337

cies, performing a time step and retrieving the model state.338

In the original OpenIFS physics routines, the different physical processes are eval-339

uated in sequence, in order of decreasing characteristic time scale. The model uses a so-340

called sequential-splitting time stepping scheme, where the model state is updated af-341

ter each process, so that later processes operate on a state modified by the earlier ones.342

To preserve this process ordering in the superparameterized model, the coupling to the343
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Figure 4. Single time step of the superparameterized OpenIFS.366

small-scale model should take place at the stage of replaced processes, namely where the344

(boundary layer) turbulence, the convection and the cloud scheme in the OpenIFS physics345

routine are called, as shown in figure 2.346

The vertical physics processes in the original OpenIFS are evaluated for one col-347

umn at a time in a single loop (actually the physical processes act on blocks of columns348

for optimal cache usage and vectorization, so the external loop runs over these sub-blocks).349

This means that the states of the superparameterized columns just before the cloud scheme350

is called, are not all available at the same time. Since these states are required for set-351

ting tendencies on the local models before their time evolution start, the local models352

cannot be time stepped in parallel with this organization of the OpenIFS physics rou-353

tines.354

To overcome this problem, and insert the model coupling at the right stage while355

keeping the local models parallel, we have split the OpenIFS time step into three global356

pieces: (i) a routine taking all prognostic fields to a state that has evolved dynamically357

and that incorporates all vertical physics effects up to the turbulence scheme, (ii) a rou-358

tine that executes the original turbulence, convection and the cloud scheme on the grid359

columns not selected for superparameterization, and (iii) a routine that executes all re-360

maining physical processes after the cloud scheme that is being executed subsequently,361

e.g. mass-fixers and diagnostics. We have also moved all stack-allocated arrays in the362

original loop over columns to heap-allocated data structures so that the global model363

keeps its state during the local model time-stepping. The original time step is therefore364

equivalent to the consecutive execution of these three routines.365

To disable the OpenIFS cloud and convection schemes as well as the boundary layer367

turbulence scheme for the superparameterized grid points, we have introduced a global368

superparameterization mask. All parameterization routines are being executed, but for369

grid points where the mask is set, the tendencies from these processes are set to zero so370

that their effects are discarded. In this approach additional diagnostics arising from these371

parameterizations can still be used, e.g. the surface heat and momentum fluxes are still372

computed by the OpenIFS surface scheme and transferred to the local models to pro-373

vide boundary conditions at the beginning of each superparameterization time loop.374
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3.2 Interface to DALES375

A similar library interface was created for DALES, with functions for initializing376

the model, setting tendencies, evolving the model until a given time, and fetching ver-377

tical profiles of the model variables. Creating a library interface for DALES required less378

involved changes than OpenIFS. The necessary changes were mainly to add interface func-379

tions for tendencies and for retrieving horizontal averages of the variables.380

3.3 OMUSE coupling framework381

OMUSE (Pelupessy et al., 2017) is a framework for creating Python interfaces for382

scientific codes written in various languages such as C or Fortran. With OMUSE, we cre-383

ated Python versions of the function interfaces to OpenIFS and DALES described above.384

OMUSE is MPI-aware, making it possible to transparently communicate with MPI-parallelized385

models.386

Through the OMUSE interface, both models can be controlled from a Python pro-387

gram by calling Python functions. Internally, OMUSE translates these function calls to388

Fortran function calls in the model codes, using MPI. Having MPI as the communica-389

tion channel between the coupler and the models enable the models to be distributed390

over multiple nodes in a cluster. Furthermore, OMUSE hides the parallel nature of the391

models — every function in the OMUSE interface is collective over the MPI tasks of a392

given model, freeing the coupler from dealing with lower-level details of how the mod-393

els are parallelized. Using OMUSE is a way to keep the model modular, making it rel-394

atively easy to for example substitute DALES with another large eddy simulation code,395

or even a single-column cloud model.396

3.4 The coupling code397

The superparameterization couplings described in section 2 have been implemented398

in a Python program using the OMUSE interfaces to OpenIFS and DALES. Figure 4399

shows the interaction of the different components during a time step of the combined model.400

Our setup does not require communication between the DALES instances and OpenIFS401

directly. All interactions are transferred through the coupling program, which fetches402

and compares the model states and provides feedback to the models in the form of ten-403

dencies. For localized superparameterization the communication overhead remains lim-404

ited. Given the way the superparameterization coupling is formulated, no 3D fields need405

to be exchanged — vertical profiles are sufficient. The cost of exchanging vertical pro-406

files is generally small compared to the DALES runtime. Having a separate coupling code407

in Python allows rapid prototyping and easy output of tailored diagnostics of the exchanged408

tendencies. It also keeps the code modular and easier to maintain.409

The OMUSE framework supports (at least on many HPC clusters) dynamic instan-410

tiation of models; the coupling script is built to launch DALES instances within a user-411

defined area at initialization, making it easy to select an area for superparameterization.412

Furthermore, unit conversions and vertical interpolation of profiles are implemented in413

the Python driver code. The system supports collection of basic performance statistics414

and adding a spin-up period at the start of the simulation, where the DALES instances415

are run for a specified time while being relaxed towards the vertical profiles of the OpenIFS416

model.417

We note that the precipitation is not yet coupled back from the local models to the418

global model. The global model schemes which rely on the precipitation model for in-419

put, the radiation and soil schemes, use the values computed with the global model’s pa-420

rameterization. This may be of relevance for long runs, over time periods so long that421

the soil properties are influenced by precipitation.422
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Coupling parameters

Number of DALES instances 42
Spin-up time 4 h
Duration 21 h

DALES parameters

Vertical resolution 25 m
Horizontal resolution 200 m
Vertical extent 4 km
Horizontal extent 40 km
Grid size 200× 200× 160
Time step adaptive, ≈ 1...20 s

OpenIFS parameters

Grid T511L91
Grid point distance ≈ 40 km
Initial state and ERA-Interim
Sea Surface Temperature forcing
Start time 2012-04-13 at 00:00 UTC
Time step 900 s

Table 2. Parameters used in the simulations441

4 Results423

Simulations using OpenIFS with a superparameterized setup over the Netherlands424

are performed for April 13 2012. This day was characterized by a west-northwesterly flow425

steered by a low over the Northern part of the North Sea. Clear skies are observed over426

the relatively cold water of the North Sea but convection developed when the cold air427

was advected from the North Sea over the Netherlands resulting in developing shallow428

cumulus clouds between 1 and 3 km over land.429

The OpenIFS initial state was constructed by interpolation from the reanalysis dataset430

ERA-Interim (Dee et al., 2011). The local models were initialized with the vertical pro-431

files of their corresponding grid points in the global model, with noise added in the hor-432

izontal direction to break the symmetry. After initialization, a spin-up of the local mod-433

els was performed, where they were run for 4 hours while being relaxed towards the state434

of the global model. After spin-up the actual simulation was started, and the global and435

local models were time-stepped together as described in section 2. OpenIFS was run with436

a T511L91 grid in all cases, giving a distance between neighboring grid points of about437

40 km. The simulation parameters are summarized in table 2. For the superparameter-438

ized run, we choose the extent of the DALES domains to match the grid point distance439

in OpenIFS.440

4.1 Cloud cover442

We compare the appearance of the cloud fields from the simulation with satellite448

images and with results from the unmodified OpenIFS. We also show vertical profiles449

of temperature, humidity, and cloud liquid water from the superparameterized run, and450

compare them with profiles from the unmodified OpenIFS, from the ERA-5 reanalysis451

and from a radiosonde observation. A full validation of the superparameterized model452

remains beyond the scope of this work.453

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0° 4°E 8°E

50°N

52°N

4°E 8°E

50°N

52°N

0

0.1

0.3

0

0.04

0.08

0.12

0.16

0.2

Figure 5. A superparameterized simulation over the Netherlands (bottom), compared to the

same simulation run in standard OpenIFS (top). DALES instances are shown in blue, over a

background showing the OpenIFS state in purple. Cloudiness (liquid water path) is shown in

shades of white for both models. The state shown is for the time 2012-04-13 11:35 UTC; the

simulation was started at midnight the same date, with a state from ERA-Interim.
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Figure 6. Zoom in on the superparameterized simulation and 3D views on selected local mod-

els, compared to a satellite image from Terra / MODIS at 2012-04-13 11:35 UTC. The star marks

de Bilt, where radiosonde observations were performed.
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Figure 5 shows a snapshot of the superparameterized simulation, compared to a454

similar run of regular OpenIFS. Animations of the simulations shown are available as455

supplementary material. The state of the simulations are shown at 11:35 UTC, with the456

simulations initialized at midnight UTC the same day. This time was chosen to coincide457

with the overpass of the Terra satellite for comparison.458

The figures illustrate the clouds in OpenIFS and in DALES through the liquid wa-459

ter path. Since the cloud optical thickness has a non-linear dependence on the liquid wa-460

ter path, we use a non-linear color map for the DALES instances, (a gamma correction461

with γ = 1/2, so the pixel coloring is determined by (qL/qLmax)γ). The plot still of-462

fers only a crude approximation of how the clouds would actually appear on a satellite463

image, since the cloud optical thickness depends strongly on the droplet size distribu-464

tion, which is not taken into account in the plot. A more detailed quantitative compar-465

ison follows in section 4.2.466

A magnification of the superparameterized run are shown in figure 6 together with470

a satellite image of the same area. As can be seen in the figure, the local models over471

land show more clouds than the ones over the sea, in agreement with the satellite im-472

age and reanalysis data. However, large, stratiform cloud fields are underrepresented in473

the superparametrized OpenIFS.474

When comparing DALES cloud fields with observations, it is good to keep in mind475

that the local models in a superparameterized setup give a representation of the convec-476

tion and clouds at a grid point of the global model, but cannot be expected to accurately477

reproduce individual features or clouds seen in observations. One reason for this is that478

the initial state does not provide any small-scale information – the DALES simulations479

are initialized with vertical profiles from the global model. Secondly, the DALES sim-480
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Figure 7. Vertical profiles at 2012-04-13 12:00 UTC, of the grid point closest to de Bilt where

radiosonde observations were performed. As a reference we use the ERA5 reanalysis and the

KNMI radiosonde observations. The horizontal line shows the cloud top height retrieved from

MODIS. The wide horizontal lines show the range of cloud top and cloud base heights a half-hour

interval from Cloudnet, recorded by the cloud radar at the Cabauw site, 22 km Southwest of de

Bilt.
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ulations are performed with periodic boundary conditions, so that spatial coordinates481

in them do not directly correspond to any particular geographic coordinates.482

4.2 Vertical profiles483

Vertical profiles of temperature, humidity and liquid water humidity at a single OpenIFS490

grid point are shown in figure 7. The superparameterized run is show with profiles from491

both DALES and the corresponding grid point in OpenIFS. It can be seen that in the492

superparameterized run, DALES and OpenIFS are consistent with each other as can be493

expected from the coupling scheme. The superparameterized run is compared to a sim-494

ilar run of the non-superparameterized OpenIFS, to the reanalysis from ERA5, and to495

radiosonde observations. The largest difference in results is seen in the liquid water pro-496

files (right panel), where the superparameterization produces significantly higher clouds497

than standard OpenIFS. The superparameterization result agrees well with the cloud498

top height measurement of MODIS, 2900 m. Also the total humidity measured by the499

radiosonde shows a sharp step at this height, consistent with this being the cloud top500

height. We additionally compare the liquid water result with cloud radar recordings from501

Cloudnet (Illingworth et al., 2007), taken at the Cabauw site, 22 km Southwest of de Bilt.502

Over 30 minutes, the cloud top height was measured at 2690 ± 100 m, and the cloud503

base at 830±90 m. These ranges are indicated with green stripes in figure 7, and show504

a good agreement with the liquid water results from the superparameterized simulation.505

When comparing simulation results with re-analysis, one should remember that the506

reanalysis was done with IFS, of which OpenIFS is a version. There may thus be a bias507
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for the reanalysis to behave similar to OpenIFS. While the comparison presented here508

is certainly too limited to draw broad conclusions about the accuracy of the superpa-509

rameterized simulation, the match between the superparameterized clouds and MODIS,510

the radiosonde observations, and the Cloudnet cloud top and base heights is encourag-511

ing. At the same time the comparisons show that in particular the liquid water profiles512

from the reanalysis are inconsistent with the MODIS and Cloudnet observations. We note513

that the parameters of DALES have not been tuned for this comparison.514

4.3 Performance515

The superparameterized run with the 42 larger DALES models presented above,516

consisting of 21 hours of simulation and 4 hours of DALES spin-up, took 39 hours on517

ten nodes of the Cray-XC40 system at ECMWF. Each node in this system contains two518

18-core Intel Xeon EP E5-2695 V4 Broadwell processors. Each DALES instance used 8519

MPI tasks, resulting in 336 DALES processes in total. The first node ran the coupling520

script, OpenIFS with 17 processes, and 12 DALES processes. The remaining nine nodes521

ran 36 DALES processes each. The total cost of this simulation was 14041 core-hours.522

Figure 8 shows the distribution of computing time over OpenIFS, the DALES mod-523

els and the communication, around the time of the snapshot shown in figure 5. Most of524

the time, 82 % is spent on the DALES models, followed by communication and coupling525

with 16 %. OpenIFS itself consumes only 2 % of the total time. There is considerable526

variation in the computational times for the different DALES instances, which appear527

since DALES uses adaptive time stepping. The more convection there is in a DALES528

volume, the shorter the time step needs to be, and the longer the simulation takes. This529

results in some work imbalance, since for each time step of the global model, the whole530

calculation must wait until the last DALES completes. If DALES would be parallelized531

with OpenMP in addition to the current MPI parallelization, it might be beneficial to532

dynamically adjust the number of tasks for each DALES instance to reduce the imbal-533

ance. Some further performance can most likely still be gained by carefully optimizing534

the job layout, and also by overlapping some of the communication steps with compu-535

tation. In the following section we address ways of accelerating the local models them-536

selves.537

4.4 Acceleration543

To reduce the computational cost of the superparameterized simulation, we con-544

sider ways of accelerating the local models, which consume most of the computational545

time. First, the horizontal extent of the local models may be chosen smaller than the546

global model’s grid size (Xing et al. (2009) calls this the ”reduced space strategy”). Global547

superparameterization studies have also frequently used this strategy, sometimes com-548

bined with making the local models 2-dimensional.549

Second, the local models can be accelerated in time, using the mean state accel-550

eration method of Jones, Bretherton, and Pritchard (2015), which was also used in the551

superparameterization context by Parishani et al. (2017) with promising results. Briefly,552

this method assumes a separation of time scales, between the time of eddy motion (fast)553

and the time on which the local model’s horizontal averages change (slow). The tech-554

nique is a good match with superparameterization, since only the horizontal averages,555

with the slow time scale, are coupled to the global model. In the mean-state accelera-556

tion technique, after every time step in the local model, the horizontal averages of the557

tendencies are calculated. These average tendencies are then applied to the model vari-558

ables in a horizontally uniform way, in order to accelerate the rate of change for the hor-559

izontal means.560
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Figure 8. Timing diagram for the superparameterized run, showing three OpenIFS time steps

around the time of the snapshot shown in figure 5. The blue horizontal bars show the wall-clock

time required for each individual DALES instance to complete the time step. The vertical bars

show the OpenIFS computation (purple) and communication between the coupler and the models

(orange).
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These techniques are demonstrated with two accelerated superparameterization runs561

with the same initial conditions as in the previous section. In the first, the horizontal562

extent of DALES is reduced to 64×64 columns, reducing the area to 10 % of the orig-563

inal. In the second run, the mean state acceleration is also applied, with an acceleration564

factor of 2. To evaluate the accuracy of the accelerated runs, we plot the RMS differ-565

ence between the global model variables and the ERA-5 reanalysis over time (figure 9).566

The plots show that the differences introduced by the acceleration are rather small.567

The computational time requirements with and without acceleration are shown in571

table 3. Reducing the area covered by DALES to 10% or the original, reduces the DALES572

run time by a factor of 8.8. Adding mean-state acceleration with an acceleration factor573

of 2, further reduces the DALES runtime by a factor of 1.9. The total run time decreases574

less dramatically, by a factor 4 or 4.9, since the amounts of time spent on coupling and575

on OpenIFS remain constant. A simple way to decrease the time fraction spent on the576

coupling and communication is to allocate fewer processes per DALES - for this com-577

parison we kept the job layout the same for all runs. Another interesting optimization578

possibility is to increase the concurrency of computation in the model codes with com-579

munication between the coupler and the models.580

These acceleration results seem promising for reducing the computational cost of584

superparameterization. We also note that the degrees of acceleration that can be achieved585

may depend on the case.586
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Figure 9. RMS difference between the superparameterized runs and the ERA-5 reanalysis,

over all superparameterized grid points for the vertical levels up to the height of the DALES

models.

568

569

570

run time (1000 s) speedup factor
LES grid time acc. DALES OpenIFS coupler total DALES total

200× 200× 160 - 115.4 2.6 22.0 140.0 1.0 1.0
64× 64× 160 - 13.1 2.6 19.2 34.9 8.8 4.0
64× 64× 160 2 6.9 2.6 19.2 28.7 16.7 4.9

Table 3. Comparison of the computational time for different parts of the simulation, with and

without acceleration methods. All runs were performed as described in section 4.3, on the same

computer system.

581

582

583

5 Conclusions and Outlook587

We have demonstrated a superparameterization of a global atmospheric model with588

a three-dimensional, high-resolution atmospheric LES over a configurable region. We show589

an example with a 21 hour run where a region with an area of 240 km × 280 km is su-590

perparameterized with high-resolution LES models. Reducing the extent of the local mod-591

els and applying mean-state acceleration drastically reduces the computational demands,592

with only minor deterioration of the results.593

The coupling between the global and local models was implemented with a cou-594

pling program in Python, communicating with the model codes using the OMUSE frame-595

work. Implementing the coupler in Python as an independent program facilitated flex-596

ible development, while providing sufficient performance. Without acceleration meth-597

ods, the major part of the computation is spent on the local models. With the introduc-598

tion of acceleration methods for the local models, the performance increased to the point599

where the time spent in the coupler becomes significant, giving us a motivation to ad-600

dress the coupler performance in the future.601
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The simulation results demonstrate the potential of this approach. The cloudy re-602

gions, observed by MODIS are reproduced by the superparameterized grid boxes. Com-603

parison with the local observations at the Cabauw site shows that the superparameter-604

ized version of OpenIFS simulates a deeper convective mixing leading to improved pro-605

files of especially the specific humidity and the cloud amount, compared with the stan-606

dard version of the OpenIFS without superparameterization.607

The simulations also illustrate limitations of this approach. As can be observed from608

Fig. 6, the superparameterized simulation poorly represents the observed coherent cloud609

structures of sizes comparable with or beyond the resolution of the global model (40 km).610

This is in part the consequence of the periodic boundary conditions of the local model611

and the lack of a direct coupling between the neighboring local model instances. This612

prevents the growth of mesoscale cloud structures, emerging from the smaller turbulent613

scales resolved in the local model, beyond the domain size of the local model. The cou-614

pling between the local and the global model, as expressed by Eq. (2) and Eq. (4), is ex-615

clusively formulated in terms of the mean values of the prognostic (thermo)dynamic vari-616

ables. Therefore, the coupling does not include any scale interaction of the variances of617

these variables, though many observational studies have shown a continuous growth of618

variances of temperature and humidity with the spatial scale as `2/3, up to scales of sev-619

eral hundreds of kilometers without any scale break (Kahn et al., 2011). Work is there-620

fore in progress to introduce an additional coupling of the variances of the prognostic621

variables, guided by the behavior of the resolved variance and cloud amount of the global622

model (Cusack et al., 1999).623

This present work and results demonstrate that employing LES models as super-624

parameterization is an attractive and efficient stepping stone toward global LES mod-625

eling which is relatively easy to implement in any existing global atmospheric model. More626

directly, it can also be used as an interactive zoom-in tool to obtain more accurate pre-627

dictions for high-impact areas such as large national airports or large wind energy and628

solar power farms. In addition there are numerous other useful applications of this frame-629

work more in the context of model development and analysis.630

As already mentioned in the introduction, this framework can serve as a useful bench-631

mark for the development of new parameterized approaches. Many of the parameteri-632

zation developments of cloud related processes of the last twenty years have been guided633

by Large Eddy Simulations of relevant cases which are forced by realistic large-scale forc-634

ings (Brown et al., 2002; Siebesma et al., 2003; vanZanten et al., 2011). The present frame-635

work provides new opportunities in this respect. It provides realistic benchmarks over636

longer periods, over larger areas, with realistic forcings that are easy to set up. The frame-637

work also allows the use of different local models, e.g. an alternative parameterization638

package, data-driven algorithms trained by the LES (Dorrestijn et al., 2013; Schneider,639

Lan, et al., 2017), or conceptual mixed layer models (Caldwell et al., 2013). This way640

it is possible to test and compare different approaches which all are in balance with the641

large scales due to the interactive coupling.642

By increasing the resolution of the global model and accordingly, reducing the do-643

main size of the local model, the present framework can also be used to quantify how644

the response of the local model will change. This will provide guidance for at which res-645

olutions and for which processes a scale-aware parameterizations are required. Such ex-646

periments will also be useful in exploring how mesoscale organization is emerging. By647

varying the resolution, the effect of imposing a scale break at different spatial scales on648

the mesoscale organization can be systematically explored.649
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Name URL Archived snapshot, DOI

sp-coupler https://github.com/

CloudResolvingClimateModeling/

sp-coupler

10.5281/zenodo.1968305

OMUSE v1.1 https://bitbucket.org/omuse/

omuse/

10.5281/zenodo.1407941

AMUSE http://www.amusecode.org/ archived with OMUSE
Dales with OMUSE interface https://github.com/

CloudResolvingClimateModeling/

dales

10.5281/zenodo.1345110

OpenIFS with OMUSE interface https://git.ecmwf.int/scm/

~g.vandenoord esciencecenter.nl/

oifs40r1-lib.git (requires license
and a user account at ECMWF)

OpenIFS, licensing information https://confluence.ecmwf.int/display/OIFS

Table 4. References for the different codes used in the superparameterization setup650
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Appendix: Analysis of the coupling scheme687

Here we analyze the model coupling scheme in more detail. We show that the de-688

sired equality (1) between the global and the (averaged) local model state is achieved689

in cases where the advection and source terms are entirely situated either in the local690

model or in the global model.691

Consider steps (i) to (iv) of the superparameterization scheme given in section 2.692

Combining (i) and (ii) gives693

Q(T + ∆T ) = 〈q(T )〉+ ∆T (AQ(T ) + SQ(T )). (14)

In (iv), fq(T ) does not change with t, and thus
∑T+∆T
t=T ∆tfq(T ) = ∆T fq. With (iii)694

and (iv), this leads to q(T + ∆T ) = q(T ) +Q(T + ∆T )− 〈q(T )〉+
∑T+∆T
t=T ∆t(aq(t) +695

sq(t)). Taking the horizontal average we find696

〈q(T + ∆T )〉 = Q(T + ∆T ) +

T+∆T∑
t=T

∆t〈aq(t) + sq(t)〉. (15)

In general, Q(T ) 6= 〈q(T )〉 and Q(T + ∆T ) 6= 〈q(T )〉, as can be seen from the identi-697

ties just derived. Thus, the equality (1) is generally not satisfied. However, if all of the698

advection and sources with nonzero average are accounted for in one model (global or699

local) and none in the other, the equality is satisfied (albeit possibly in a time-lagged sense).700

More precisely, assume AQ(T ) + SQ(T ) = 0, i.e. all advection and sources are in the701

local model. Then Q(T+∆T ) = 〈q(T )〉 by construction. Conversely, if the local model702

has no advection or source terms with nonzero horizontal average, so that 〈aq(t)+sq(t)〉 =703

0 for all t, we have 〈q(T + ∆T )〉 = Q(T + ∆T ).704

If both AQ(T ) + SQ(T ) 6= 0 and 〈aq(t) + sq(t)〉 6= 0, we can consider the differ-705

ence between Q(T+∆T ) on the one hand and a weighted average of 〈q(T )〉 and 〈q(T+706

∆T )〉 on the other hand. Defining the weighting parameter α with 0 ≤ α ≤ 1, we have707

Q(T )− (α〈q(T )〉+ (1− α)〈q(T + ∆T )〉) =

α∆T (AQ(T ) + SQ(T ))− (1− α)

T+∆T∑
t=T

∆t〈aq(t) + sq(t)〉 . (16)

The RHS equals zero if ∆T (AQ(T ) + SQ(T )) and
∑T+∆T
t=T ∆t〈aq(t) + sq(t)〉 have the708

same sign and their ratio equals (1− α)/α. To satisfy the latter requirement, α must709

depend on time T , vertical level z and prognostic variable q,Q.710
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