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Project Title: ………… Effects of a stochastic gravity wave parameterization on 
the simulation of stratospheric dynamics ………………………… 

Extended abstract 
It is expected that Special Projects requesting large amounts of computing resources (500,000 SBU or more) should 
provide a more detailed abstract/project description (3-5 pages) including a scientific plan, a justification of the 
computer resources requested and the technical characteristics of the code to be used. The Scientific Advisory 
Committee and the Technical Advisory Committee review the scientific and technical aspects of each Special Project 
application. The review process takes into account the resources available, the quality of the scientific and technical 
proposals, the use of ECMWF software and data infrastructure, and their relevance to ECMWF’s objectives. - 
Descriptions of all accepted projects will be published on the ECMWF website. 

Current state-of-the-art Atmospheric General Circulation Models (AGCM) do not explicitly resolve 
small-scale waves and use parameterizations to take into account the momentum deposition 
associated with upward propagating gravity waves (GWs). 

Specifically, the orographically excited GWs, which are stationary, having an important role in the 
extratropics Northern Hemisphere (NH) middle atmosphere in winter and GWs with non zero phase 
speed relative to the surface, having a predominant contribution to the momentum budget of the NH 
extratropics during summer and in the tropics and Sothern Hemisphere (SH) during all time of the 
year. 

In GCMs, contributions to the forcing by subgridscale (unresolved) flows are generally represented, 
if at all, by deterministic parameterizations. A deterministic parameterization is based on the 
assumption that subgrid-scale flows are in some form of statistical equilibrium with the resolved 
fields and that such a statistical equilibrium can be adequately represented by the mean of their 
distribution alone. Some studies have suggested that representing higher-order moments in 
parameterizations of subgrid-scale flows may improve GCMs. 

For example Buizza et al. (1999) showed how the forecasting skill in the European Center for 
Medium-Range Weather Forecast Ensemble Prediction System (ECMWF EPS) could be improved 
simply by adding an arbitrary amount of variance to the total parameterized forcings. Palmer (2001) 
used a low-order simple dynamical system to show that using a deterministic parameterization for 
one of the independent variables fails entirely to reproduce the expected features of the system. He 
also showed that adding a simple stochastic term to the parameterized variable improved the system 
behavior greatly and suggested that some of the remaining errors in climate prediction may have 
their origin in the neglect of subgrid-scale variance. Piani (2003) extended these results and showed 
that a further improvements could be made by constraining the stochastic parameterized variable to 
follow the probability density function observed in the original system. 

Therefore, if the distribution of a stochastic parameter is known, that should be used to constrain the 
stochastic parameter in the GCM. In our case, we will use the analysis of Piani et al 2013 that used 
observations of the flow at the subgrid-scale to define a distribution for the root mean square GW 
winds. The model in use is the ECHAM5 GCM that already includes a Doppler-spread Hines 
scheme. 

The purpose of the work will be to include a stochastic component in the already existing 
parameterization to represent the intermittent nature of the convective generating processes. The 
sensitivity of the tropical and polar stratosphere to changes in the gravity wave scheme will then be 
examined.  
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Particular attention will be given to how the Quasi Biennial Oscillation (QBO) and the winter 
stratosperic polar vortices respond to changes in the introduction of a stochastic source strength 
with varying distributions into the gravity wave parameterization.  

The QBO of equatorial zonal winds is a prominent feature of stratospheric dynamics. That is driven 
downward by waves which originating in the troposphere and travelling upwards into the 
stratosphere. The waves break, deposit momentum and cause a downward propagation of the wind 
max ima. Those waves include large scale Kelvin and Rossby-gravity waves as well as smaller 
scale gravity waves with shorter horizontal wavelength. Dunkerton (1997) show that the 
contribution of intermediate inertia-GWs and mesoscale GWs is necessary to produce a QBO with 
realistic period and amplitude. For a more detailed description on the forcing and the physical 
mechanisms of the QBO (see the review paper by Baldwin et al. 2001). The QBO has also impact 
on other parts of the atmosphere, in both the stratosphere and the troposphere. Holton and Tan 
(1980) show that the easterly phase of the QBO is associated with weakening of the northern 
wintertime stratospheric polar vortex. In the troposphere, the QBO influences tropical cyclone 
tracks (Ho et al. 2009), the boreal summer monsoon (Giorgetta et al. 1999) and tropical deep 
convection (Collimore et al. 2003).  

Experimental details: 

We will make make use of the MA-ECHAM5 model (Roeckener et al., 2006) with top at 0.01 hPa 
and 95 vertical layers, T63 horizontal resolution (about 1.9 degrees) and with the shortwave 
radiation scheme implemented by Cagnazzo et al. (2007). This version of ECHAM5 includes a 
well-resolved stratosphere in the sense that stratospheric planetary wave–mean flow interaction, 
possibly leading to SSW events, is explicitly resolved and the effects of both orographic and non-
orographic gravity waves on the stratospheric and mesospheric large-scale flows are parameterized 
(Manzini et al., 2006; Charlton et al., 2007; Cagnazzo and Manzini, 2009). It also includes a 
spontaneously occurring QBO (Giorgetta et al., 2006). The standard model version employs the 
GW scheme after Hines which is based on the Doppler spread theory (Hines 1997a, b). The 
schemes launches a broad band spectrum of waves at 600 hPa with constant amplitude in time and 
longitude. The strength of the source is determined by the RMSCON (root mean square of the wind 
variability) parameter. At each time step, four pulses of upward propagating gravity waves are 
released. The waves propagate in the four cardinal directions and are characterized by the same 
initial vertical wave number spectrum. 

In the first year we will realize a first set of simulations (50 years long each) by changing the 
RMSCON parameter in the deterministic model configuration over all the globe and study the 
sensitivity of the atmospheric circulation to the chosen parameter. The simulations will be 
atmosphere-only with imposed observed SSTs. Another set of simulations will be realized by 
changing the RMSCON parameter differently in the tropics and in the extra-tropics. A stochastic 
parameterization of the RMSCON will then be realized and implemented in the model, with 
different the gravity wave source strength constrained to follow different probability distributions. 
A set of test simulations will be realized. The analysis of stratospheric and tropospheric dynamics 
will focus in the Tropical regions and in the polar vortex part of the atmosphere in the two 
hemispheres. 

In the second and third year, the atmospheric model will be run in its coupled atmosphere-ocean-
seaice version. The ocean-sea-ice component is OPA-LIM, with 31 levels and horizontal resolution 
of 2°x2° with refinements around the Equator (Madec et al., 1999; Timmermann et al., 2005). The 
physical and technical coupling interface is described by Fogli et al. (2009). A set of long term 
simulations will be realized. The simulations in the case should be ~ 300 years long, after a further 
~ 500 years oceanic model spin-up. 
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The simulated stratosphere will also be compared with the one simulated by the EC-EARTH model.  
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