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Summary of project objectives

(10 lines max)

The scientific objective of this project is to make use of the Lyapunov covariant modes for
atmospheric predictability studies. Until now, only singular vectors and bred vectors have been used
for predictability studies of the atmosphere. The covariant modes describe the intrinsic instabilities in
the vicinity of each trajectory in the phase space so that they are the more relevant to describe the
error dynamics near a given prevision. Slow modes, which have a growth rate close to 0 should be
less susceptible to saturate and may carry the extended range predictability. We aim to examine the
properties of these modes and the predictability within this framework.

Summary of problems encountered (if any)

(20 lines max)

The project was aiming at first to make a review paper on current status on predictabilities issues
using Lyapunov vectors (either covariant, backward vectors or breeding modes) and to use the
numerical simulations done at ECMWF as examples. During the year, such a review was published
(Kuptsov and Parlitz, 2012). Nonetheless the most interesting part in the study of these vectors is not
already published/addressed by other groups, i.e. the case of barotropic quasi-geostrophic turbulence.
Another problem was that we did not succeed to recruit a PhD student to work on that subject, which
delayed our work.

Summary of results of the current year (from July of previous year to June of current
year)

This section should comprise 1 to 8 pages and can be replaced by a short summary plus an existing
scientific report on the project

Lyapunov vectors can be decomposed into three classes: forward vectors which correspond to linear
perturbations which are orthogonal to each other for some particular norm and grow exponentially
with time (at rates called the Lyapunov exponents). These forward vectors are the limit at infinite
time of the well-known singular vectors used at ECMWEF. On the contrary, backward vectors are
vectors orthogonal to each other that have grown exponentially in the past (with rate equal to the
Lyapunov exponents). They are related to the well-known bred vectors as discussed by Legras and
Vautard (1995). Both types of vectors share the same properties to be norm-dependent and not to be
time invariant (in the sense that if we let evolve these vectors over a finite time, we do not obtain
the corresponding vectors at the new time). Because of these flaws, these two families of vectors do
not characterize the intrinsic properties of the dynamical system. However, from these two classes
of vectors, one can derive another class (the Covariant Lyapunov Vectors, CLVs) that satisfies both
the norm independence and the invariance in time. These CLV (and the Lyapunov exponents) fully
characterize the natural instability of the system. Recently, new techniques have been proposed to
compute the CLVs, which present the advantage to be tractable numerically.

At the moment, no study of these vectors was done for atmospheric flows with high number degrees
of freedom, only simplified systems for other applications were studied. Our aim is to compute
these CLVs and use them to characterize the intrinsic instability properties of atmospheric flows
and evaluate the potential of these vectors for long-range predictability.

The first part of the project was to adapt one typical model of the atmosphere, the quasigeostrophic
barotropic model to the HPCF and to implement a parallel version of the method to compute these
different vectors (using a method proposed by Ginelli et al. 2006). We were able to compute 256
CLVs for a numerical simulation of 256*256 degrees of freedom with a spectrum of Lyapunov
exponents that includes both positive and negative exponents. This is quite challenging since we
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need to compute both the trajectory and backward Lyapunov vectors and the high number of
perturbations was necessary in order to capture the perturbation with Lyapunov exponent close to
zero. Also only a long time period allows the Lyapunov exponents to converge slowly in time and
we need the precise knowledge of these exponents in order to sort the CLVs as a function of these
exponents. At first, we have checked that the CLVs that were computed were norm-independent
and time-invariant and we have examined the convergence rate of the technique to compute these
vectors.

Figure 1 shows a typical snapshot with the background flow in gray shadings and the Lyapunov
covariant modes (each mode with a different color). The background flow is presented as its relative
vorticity, with high positive values in white, and high negative values in black. One can see the
presence of numerous vortices and filaments in between, corresponding of the standard picture of
two-dimensional turbulence. The CLVs are represented in colors, showing only regions of absolute
value in vorticity larger than a certain threshold. We observe that CLVs are mainly located inside
eddies and filaments (when plotting the vorticity of these perturbations). A difficulty when plotting
the CLV spatial structures is that we have to choose a particular quantity (kinetic energy,
streamfunction, vorticity) to show them, while they are not dependent on the related norm.
Nonetheless, what is striking in figure 1 is that CLVs bear some similarities between each other:
some part of one CLV can overlap with another part of another CLV (see for instance the blue and
green contours on the top left of Figure 1). We hypothesize that this is a manifestation of
“collective” behavior of CLVs (which has been reported in the literature for simpler systems), but
here this behavior occurs only in some particular regions of the background flow (here mostly
eddies and filaments).

One difficulty in analysing such a flow is that there are too many interactions between vortices, so
each CLV projects on many vortices at the same time (see the numerous red structures in figure 1
which correspond to only one CLV). This issue can be overcome by examining more idealized
situations of 2 or 3 vortices interacting between each other. These situations occur frequently in
fully turbulent flows. However, in this case, the Lyapunov exponents are zero or negative (since a
flow without forcing cannot sustain any instability). Nonetheless, for periods of time long enough
but not too long, we observe the superposition of CLVs for the case of rotating or translating
vortices (Figure 2a and b), which is consistent with what occurs in the fully turbulent simulation of
Figure 1.

An analysis of the evolution in time of CLV and the basic flow confirms the robustness of these
findings in the different cases.

June 2013 This template is available at:
http://www.ecmwf.int/about/computer_access_registration/forms/



Figure 1: In gray shadings, horizontal field of relative vorticity showing numerous coherent vortices.
In color, covariant Lyapunov perturbations (in term of vorticity perturbation). Each different color
represents one particular perturbation associated with one Lyapunov exponent.

Figure 2: Case of (a) two rotating vortices, (b) translating vortex dipole. In shadings, horizontal
vorticity field of the background flow. Blue, red and green contours correspond to the 3 first CLVs
which correspond to positive Lyapunov exponents (when computing during the first part of the
simulation).
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List of publications/reports from the project with complete references

Summary of plans for the continuation of the project

(10 lines max)

We are now planning to implement a second technique (Kuptsov and Parliv 2012) to compute the
covariant Lyapunov vectors, which would allow us to ascertain the accuracy of the computation of
these vectors and to compare the advantages and the drawbacks of the two existing methods. A next
step will be more theoretical since we need to provide a way to compare the CLVs with the
appropriate norm in spatial space. Finally, we will examine how these CLVs may help in determining
long-range predictability by examining the dynamics associated with the vectors associated with
Lyapunov exponents near zero.
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