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Linearised physics: the heart of ECMWF’s 4D-Var
Marta Janisková, Philippe Lopez

In 1997, the incremental four-dimensional variational (4D-Var) data assimilation system became 
operational at ECMWF. 4D-Var is the system used at ECMWF to combine a short-range forecast with 
observations to produce the best possible estimate of the current state of the atmosphere. This then 
provides the initial conditions for a new forecast. The system works by minimising a cost function, 
which measures the departure of the analysis from observations and the short-range forecast. In this 
minimisation, linearised versions of the forecast model are used to efficiently determine the optimal 3D 
representation of the atmospheric state at a given time. From the very beginning, it was recognised that 
it is crucial to represent physical processes in the linearised model. Parametrization schemes used in 
linearised models have gradually become more and more complex. Nowadays, comprehensive schemes 
are included in ECMWF’s 4D-Var system. Recent data assimilation tests using the latest version of the 
linearised physics have again demonstrated a systematic and significant improvement for all parameters, 
levels, and regions.

Principles
At ECMWF, the 4D‑Var analysis system is employed to generate 3D atmospheric states (or analyses) 
which, together with separately produced land and ocean conditions, can be then used to initialise the 
Earth system model. This system uses the model dynamics and physics in an optimisation procedure, 
which aims to improve the overall fit of initial conditions to the observations available inside the 
assimilation time window, while staying as close as possible to the model first guess (a short‑range 
forecast which forms the starting point in creating the analysis) in poorly observed regions. For more 
details see Box A.

4D-Var relies on linearised versions of the forecast model, namely its tangent linear and adjoint versions 
(see Box B), to describe the time evolution of small perturbations around the reference state, typically in 
terms of temperature, wind, humidity and surface pressure.

In the 1980s, when experimentation and developments towards 4D-Var data assimilation were under 
way, only the adiabatic version (i.e. dynamics only) of the linearised models was used. However, the 
importance of representing physical processes was soon recognised. It started to become obvious 
that the mismatch between the model analysis and observations can remain large during the 4D-Var 
minimisation when only the adiabatic linearised model is used to evolve the model state from the 
beginning of the assimilation window to the time of each observation. Besides, without the inclusion of 
physics in variational data assimilation, the assimilation of many satellite observations, such as all-sky 
radiances, precipitation and cloud‑affected measurements, would simply be impossible.

ECMWF linearised physics
Although already started in the mid-1990s, the development of the linearised physics (LP) really gathered 
pace at the turn of the century, with the operational implementation of 4D-Var.

At ECMWF, parametrization schemes for linearised models started from very simple ones. They aimed 
to remove very large increments, especially those produced close to the surface by the adiabatic model 
(Buizza, 1994). More complex but still incomplete schemes were then developed by Mahfouf (1999). 
Over the following years, more comprehensive schemes were gradually implemented. This led to a set of 
schemes able to describe most physical processes and their interactions with almost as much detail as 
in the non‑linear model, but with just slight simplifications and/or regularisations (Janisková et al., 2002; 
Tompkins & Janisková, 2004; Lopez & Moreau, 2005).

The current set of physical parametrizations used in ECMWF’s linearised model (called simplified or 
linearised parametrizations hereafter) comprises six different schemes: radiation, vertical diffusion, 
orographic gravity wave drag, moist convection, large-scale condensation/precipitation and non-
orographic gravity wave activity. The schemes are sequentially called in this order (Janisková & Lopez, 
2013). This LP package is quite sophisticated and is believed to be the most comprehensive one currently 
in use for operational global data assimilation.



doi: 10.21957/mjb5e1d9n6 3

Marta Janisková, Philippe Lopez Linearised physics: the heart of ECMWF’s 4D-Var

4D-Var methodology

The goal of 4D‑Var is to define the initial atmospheric state such that its distance to the original model trajectory 
on the one hand and to the observations on the other is as small as possible over the assimilation time window 
(see the figure in this box).

At ECMWF, an incremental approach is used as a cost‑effective formulation of 4D-Var (Courtier et al., 1994). Using 
the incremental formulation, the model state at any time is defined in terms of an increment, i.e. a small perturbation 
around the background state (typically, a previous short‑range forecast). To the first order, the 4D‑Var problem can be 
solved by finding the analysis increment dx0 at initial time t0 which minimises the following cost function:

 (1)

At any time ti, dxi = xi - xi
b is the analysis increment representing the departure of the model state (x) with 

respect to the background (xb), which consists of temperature, humidity, vorticity, divergence and surface 
pressure in the current 4D-Var system. di = yi

o – Hi(xi
b) is the so-called innovation vector, which provides the 

departure of the model background equivalent (Hi(xi
b)) from the observation (yi

o). Hi is the linearised 
observation operator (also describing the spatial interpolations to the observation locations and the forecast 
model integration propagating the initial state x0 to the time of observation). Ri is the observation-error 
covariance matrix (including measurement and representativeness errors) and B is the background-error 
covariance matrix of the state xb.

The minimisation requires an estimate of the gradient of the cost function:

              (2)

where MT is the adjoint of the forecast model M and HT is the adjoint of the observation operator H, as 
explained in Box B.

The incremental approach reduces the computational cost of 4D-Var since the perturbations dxi and the gradient of 
the cost function are computed at a lower resolution using the simplified model during successive minimisations 
(currently four at ECMWF). After each minimisation, the model trajectory is recomputed at high resolution.

In operational practice, innovation vectors are computed with the nonlinear model at high resolution including full 
physics. Increments are computed with the tangent‑linear model at low resolution including simplified physics. 
The gradient of the cost function is computed with the low‑resolution adjoint model using simplified physics.
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Schematic description of 4D-Var.
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Tangent-linear (TL) and adjoint (AD) models

If the model M describes the time evolution of the 
model state x from time ti to time ti+1 as:

 (3)

the time evolution of a small perturbation δx can be 
estimated to the first order approximation by the 
tangent-linear version M of the non-linear model M:

  (4)

The adjoint of the linear operator M is the linear 
operator M* such that:

 (5)

where 〈 , 〉 denotes the inner product and x, y are 

randomly chosen input vectors. The adjoint 
operator, for the simplest canonical scalar product 
〈 , 〉 in Eq. (5), is actually the transpose of the 
tangent linear operator, MT. 

Variational assimilation is based on the adjoint 
technique, since the adjoint model MT can provide 
the gradient of any objective (cost) function, J, with 
respect to x(ti) from the gradient of the objective 
(cost) function with respect to x(ti+1):

 (6)

The integration of the AD forecast model works 
backward in time and all adjoint equations in the 
code are in reverse order compared to the tangent-
linear equations.

Developing and testing the linearised model
The construction of the linearised model starts with the design of a set of suitable non-linear physical 
parametrizations, from which the tangent-linear and adjoint versions can be derived. Thus, the whole 
development is rather demanding since it requires a good knowledge of both physical parametrizations 
and the adjoint. The validation must be very thorough, and it must be performed for the non-linear, 
tangent-linear and adjoint versions of the physical parametrization schemes.

Building the linearised model: a tricky compromise
In the real world, physical processes can be highly non-linear (NL) and often discontinuous. Since 
4D-Var relies on the linearity assumption, it is necessary to either discard processes which could lead to 
instabilities, or to apply some regularisation to smooth the parametrizations’ discontinuities and render 
the schemes as differentiable as possible. Another constraint when developing parametrization schemes 
for data assimilation is related to the minimisation of the 4D-Var cost function, which is solved with an 
iterative and therefore computationally demanding algorithm. Because of the constraints related to 
linearity and computational cost, the full NL model needs to be simplified before its successful inclusion 
in 4D-Var computations. However, at the same time, parametrization schemes used in the linearised 
model must maintain a realistic representation of physical processes and remain as close as possible to 
the reference full NL model.

Once the simplified code is developed, it is necessary to tune and validate it. This is done by evaluating 
short forecasts (typically 12 hours; the length of the 4D‑Var time window) to ensure that the new 
simplified scheme is stable and does not depart too much from its full NL counterpart over the targeted 
integration period.

Tangent-linear approximation and regularisation
The tangent-linear (TL) model is used in 4D-Var to evolve increments of the model state in time, from the 
beginning of the assimilation window to the time of the observations.

To build the tangent-linear model, a linearisation is performed with respect to the local tangent of the 
model trajectory. For the validation of the TL approximation, the accuracy of the linearisation is evaluated 
using pairs of two non‑linear 12‑hour forecasts. First the difference between two non‑linear integrations 
(one starting from a background field and the other one starting from the corresponding analysis) is 
computed with the full NL model taken as a reference. Then a corresponding TL integration calculates the 
time evolution of the analysis increments (the difference between the analysis and the background field), 
with the trajectory being taken from the background field. The TL integration can then be compared with 
the NL difference to assess how well the TL model approximates its full NL counterpart. For a quantitative 
evaluation of the impact of linearised schemes, mean absolute errors between TL and NL integrations 
are computed. The mean absolute error for the TL model without physics (i.e. the adiabatic TL model) is 
usually taken as a reference in these comparisons.

B
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In some situations in which strong nonlinearities are present, especially when physical processes are 
included, special care must be taken to avoid the spurious development of perturbations in the linearised 
model. Without a proper treatment of the most significant nonlinearities and thresholds, the TL model 
can quickly become too inaccurate to be useful. Figure 1 illustrates some erroneous behaviour of the 
TL model due to too large local derivatives in the linearised model. When using the TL model without 
any regularisation in the orographic gravity wave drag scheme, strong spurious noise develops in 
the TL model (Figure 1a) compared to the differences between two NL integrations (Figure 1b). When 
regularisation is applied (consisting here in retaining the low‑level blocking, while significantly reducing 
contributions from all other sub‑grid scale orographic effects), TL increments (Figure 1c) agree well with 
the NL differences.
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Figure 1 Zonal wind increments around 850 hPa after 12-hour evolution: (a) the tangent-linear (TL) model without 
regularisation in the orographic gravity wave drag scheme, (b) non‑linear differences, and (c) the TL model with 
applied regularisation in the orographic gravity wave drag.

The impact of the LP on the TL approximation is illustrated in Figure 2. It shows the zonal mean cross-
section of the change in TL error for temperature when the full LP is included in the TL model relative to 
the adiabatic TL model. The TL error is significantly reduced almost everywhere when physics is included 
in the linearised model. The largest improvement is observed in the lower troposphere, where many 
physical processes are active. Similarly, when looking at mean vertical profiles of the change in the TL 
error (Figure 3), there is a clear improvement for all variables (temperature, zonal and meridional wind, and 
humidity) and throughout the vertical.

80°N

120

100

80

60

40

20

60°N 40°N 20°N 0°

M
od

el
 le

ve
l

20°S 40°S 60°S 80°S

-100 -50 -20 -10 -5 -2 -1
(%)

1 2 5 10 20 10050

Figure 2 Zonal (latitudinal) mean impact 
of ECMWF’s operational linearised 
physics on the TL approximation error for 
temperature. Blue colours show a relative 
improvement of the TL approximation 
due to the inclusion of the full linearised 
physics in the linearised model, 
compared to the purely adiabatic TL 
model. Red colours show a degradation. 
The evaluation is based on a set of 20 runs 
at 50 km resolution and is valid after 
12 hours of integration.
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As illustrated, the TL model describing the evolution of perturbations, with simplified physical 
parametrizations included, generally fits the corresponding NL differences much better than the adiabatic 
TL model, provided discontinuities in the different physical parametrizations are properly smoothed. 
However, a regular effort is needed to ensure that the linearised model remains stable and noise‑free in all 
meteorological situations, and after any modifications to the full NL model or to the TL model itself, or any 
change in the computing environment.

Adjoint test
In variational data assimilation, the adjoint version of the TL model (which includes physical 
parametrizations at ECMWF) is used to estimate the gradient of the cost function to be minimised. 
The correctness of the adjoint must always be thoroughly checked by testing the identity described in 
Equation 5 (Box B). In this test, the TL and AD codes must agree to the level of machine precision, as 
illustrated in Figure 4. This test must be satisfied for global 3D atmospheric states and for integrations 
up to 12 hours (i.e. the maximum length of the 4D-Var window at ECMWF). Achieving a correct adjoint 
test can be really time-consuming, as even the tiniest error in the code will make the test fail. It should be 
emphasised that the correctness of the adjoint test does not guarantee the correctness of the tangent-
linear code. It only indicates that the adjoint is correct with respect to the TL code from which it was 
derived.

Impact of the linearised physics on 4D-Var analysis and forecast
The incremental impact of any change of the model’s physics on both TL approximation and on the 
performance of ECMWF’s Integrated Forecasting System (IFS) is regularly evaluated for every new model 
cycle. However, it has been a decade since the last time the impact on forecast skill from including the full 
linearised physics package in the 4D‑Var minimisation was assessed (Janisková & Lopez, 2013). Since 
then, several updates have been made to the linearised model to follow the changes of the full NL model. 
For instance, the cloud and convective schemes were significantly modified, and a simplified linearised 
parametrization of surface processes was implemented. Other adjustments were also required to deal 
with additional problems due to non-linearities and discontinuities in the parametrization schemes, which 
resulted from the increase in the horizontal and vertical resolutions of the model.   

Figure 4 Evaluation of the correctness of 
the adjoint code for ten different physics 
configurations (i.e. activating or not activating 
the different physical parametrization schemes). 
Here, the number of matching digits is 
computed from an ensemble of 20 members 
run at TL399 and L137 resolution, and at the 
end of a 12-hour integration, using the next 
model cycle, 48r1. Ideally, the number of 
matching digits should be at least ten (green 
and blue boxes). The two leftmost columns 
correspond to configurations with full linearised 
physics on.

Number of matching digits
20 12 12 12 12 13 13 13 13 13 13
19 14 14 13 13 14 13 13 14 15 13
18 11 11 13 13 13 13 14 14 12 14
17 11 11 13 14 13 13 14 13 13 13
16 13 13 13 14 12 12 13 15 14 13
15 13 13 14 14 14 13 14 12 14 13
14 12 12 14 14 14 13 14 13 13 12
13 13 13 14 13 13 14 13 13 13 14
12 14 14 12 13 15 14 13 14 13 13
11 13 13 14 13 13 14 13 13 14 13
10 13 13 13 11 14 14 14 13 14 13
9 14 14 14 13 13 14 14 13 14 14
8 12 12 13 12 13 13 13 14 13 13
7 12 12 13 11 13 14 13 14 13 12
6 13 13 12 12 13 15 14 13 14 12
5 13 13 13 12 12 13 12 13 13 13
4 13 13 14 12 13 13 13 14 13 12
3 13 13 14 13 14 13 13 13 13 14
2 13 13 13 13 13 13 13 13 13 13
1 12 12 13 14 14 13 14 12 13 13

1 2 3 4 5 6 7 8 9 10
Physics configurations
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Furthermore, the impact on forecast scores coming from including the linearised physics in the 4D-Var 
system is illustrated in Figure 6. The systematic and significant improvement for all parameters, levels and 
regions is clear. As expected, the impact of the LP in 4D-Var is largest close to analysis time. The positive 
impact is highly remarkable, especially in the tropics. Overall, these results demonstrate the vital role of 
the LP in the 4D-Var system, not only through its own huge positive impact, but also because it allows 
the assimilation of a whole range of observations which strongly rely on information provided by physical 
parametrizations, such as cloud, precipitations and surface parameters.

Figure 5 Difference between experimental runs and the reference run in terms of the standard deviation normalised 
by the standard deviation of the reference, for the first guess fits to different observations. The top three charts are 
for conventional observations: (a) humidity profiles, (b) temperature profiles from radiosondes, and (c) wind profiles 
from radiosondes, aircraft and wind profilers. The bottom three charts are for satellite observations: (d) geostationary 
satellite water vapour channel brightness temperatures at different wavelengths (WV in μm) from METEOSAT-8 and 11, 
HIMAWARI-8 and GOES-16, using the SEVIRI, AHI and ABI instruments, (e) satellite observations (SATOB) of wind and 
(f) Aeolus backscatter. The reference run is represented by the 100% vertical line and positive values correspond to a 
worse fit to assimilated observations in the runs without linearised physics. Horizontal bars indicate statistical significance 
at the 95% level. The results are shown for experiments excluding all observations requiring input from the linearised 
physics (in red) and additionally excluding the whole linearised physics (in black). Statistics are for the whole globe and 
over the period of July to September 2021.

To evaluate the impact of the latest whole linearised physics package, three experiments have been 
performed for the period of July–September 2021, using IFS Cycle 47r3 at resolution TCo639 L137, 
corresponding to a horizontal resolution of approximately 18 km and 137 model levels in the vertical. 
4D‑Var had inner loops at resolution T159, T191 and T255, corresponding approximately to 130 km, 
100 km and 80 km respectively, and L137. The first experiment included the linearised physics and 
all observations as used in operations (reference); the second one excluded all observations (mostly 
precipitation and cloud‑affected) which could not be used without the linearised physics in 4D‑Var; the 
third one also excluded the whole linearised physics. 

The impact of including physical processes in the linearised model on 4D-Var analyses was assessed 
by comparing the first guess fit to assimilated observations. The results are shown in Figure 5 both for 
conventional observations (humidity and temperature profiles as well as wind observations) and for 
selected satellite observations (satellite observations of wind and Aeolus satellite backscatter). They 
clearly indicate that the inclusion of LP in data assimilation provides significantly better 4D‑Var analyses.
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Figure 6 Relative impact from the inclusion of the linearised physics in ECMWF’s 4D-Var system on forecast scores 
against own analysis, shown in terms of root‑mean‑square errors normalized by the Cycle 47r3 reference. Positive values 
correspond to an improvement when including the linearised physics in 4D‑Var, and bars indicate significance at the 
95% confidence level. The impact from using observations related to the physics is in red, while the combined impact of 
including the whole linearised physics and observations requiring physics information is in black. Results are shown for 
(a) 500 hPa geopotential, (b) 850 hPa vector wind, and (c) 1,000 hPa temperature, and for different regions as indicated. 
The scores are computed for the period July to September 2021.

Conclusion
Including physical parametrization schemes in the linearised model clearly brings a large positive and 
significant impact in the data assimilation system at ECMWF. The inclusion of LP in 4D‑Var is essential 
not only to improve the realism of 4D-Var increments, but also to assimilate observations that are highly 
sensitive to physical processes (e.g. cloud, precipitation, surface temperature and moisture). Therefore, 
proper maintenance and development of the LP will be an absolute prerequisite to the longevity of 4D-Var, 
unless a competitive alternative can be found. For instance, ECMWF is looking at the potential role of 
machine learning emulators in the EU-funded MAELSTROM project.

Developing well‑behaved and efficient linearised physics can be a complex and demanding task. For any 
new or major revision to a parametrization, a substantial amount of work can be required to simplify 
and regularise the code so that discontinuities and nonlinearities are eliminated or smoothed out. It is 
also essential to verify that the TL approximation is not degraded whenever a physical parametrization 
is modified, or the model horizontal or vertical resolution is changed, and to swiftly address any 
deterioration through appropriate updates to the TL and AD codes. 

To maintain the best analysis and forecast performance possible, the best compromise between the 
constraints of linearity and computational cost on the one hand and realism on the other must be 
achieved. Increasingly complex parametrizations in the nonlinear model and increasing model and data 
assimilation resolution make maintaining the LP package challenging. However, these results demonstrate 
the considerable benefit to forecast skill achieved by continuing to meet these challenges.
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