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1 Introduction   

The most recent change to the ECMWF forecasting system (IFS Cycle 47r2, on 11 May 2021) is 

summarised in section 2. The description of changes and meteorological impacts from this upgrade 

largely follows the ECMWF Newsletter article of Rodwell et al. (2021). Verification results of the 

ECMWF medium-range upper-air forecasts are presented in section 3, including, where available, a 

comparison of ECMWF’s forecast performance with that of other global forecasting centres. Section 4 

presents the verification of ECMWF forecasts of weather parameters and ocean waves, while severe 

weather is addressed in section 5. Finally, section 6 discusses the performance of monthly and seasonal 

forecast products.  

As in previous reports a wide range of verification results is included and, to aid comparison from year 

to year, the set of additional verification scores shown here is consistent with that of previous years 

(ECMWF Tech. Memos. 346, 414, 432, 463, 501, 504, 547, 578, 606, 635, 654, 688, 710, 765, 792, 

817, 831, 853, 880). A few new plots have been included to highlight additional aspects of ECMWF’s 

forecast performance. A short technical note describing the scores used in this report is given at the end 

of this document. 

Verification pages are regularly updated, and accessible at the following address: 

www.ecmwf.int/en/forecasts/charts 

by choosing ‘Verification’ under the following headers  

• ‘Medium Range’ (medium-range and ocean waves) 

• ‘Extended Range’ (monthly)   

• ‘Long Range’ (seasonal) 

 

2 Changes to the ECMWF forecasting system  

On 11 May 2021, ECMWF implemented a substantial upgrade of its Integrated Forecasting System 

(IFS). IFS Cycle 47r2 includes changes to the forecast model, but not to the data assimilation system. 

The upgrade is neutral for the medium-range deterministic high-resolution (HRES) forecast but brings 

benefits to the medium- and extended-range ensemble forecasts (ENS). 

2.1 Model changes 

Previous versions of the IFS have used ‘double precision’, where each number is stored using 64 bits of 

memory. This is often more accurate than required when we consider observational errors and model 

approximations. Single precision, in which each number is stored with 32 bits of memory, offers the 

prospect of freeing up memory and, importantly, increasing processing speeds. This allows 

computational savings to be made which can be used to achieve skill improvements. Faster core 

processing of single-precision data permits a 50% increase in ENS model levels from 91 to 137. Even 

with this increase in levels, data transferred between the memory on each node is reduced because it is 

now in single precision.  
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Double precision is still used throughout the data assimilation process, and some calculations in the 

forecast do still require double precision. The most expensive of those, such as the calculation of the 

associated Legendre polynomials and the finite-element integral operators of the vertical discretisation, 

are only done once and are not repeated during time-stepping. Hence, there is minimal impact on 

computational efficiency. Further detailed experimentation helped us to identify a few other calculations 

in parts of dynamics and physics and the stochastic physics perturbations that need to be secured with 

double precision. However, those also represent a very small part of the total computational load.  

The change to 137 levels brings ECMWF one step closer to a more seamless ensemble data assimilation 

and forecasting system. The need for vertical interpolation when generating ensemble initial conditions 

is now greatly reduced as the ensemble of data assimilations (EDA) is already run with 137 levels. The 

consistency with the HRES vertical resolution should also aid the evaluation process of future cycles. 

Technical changes to the ensemble include the calculation of singular vector perturbations with 137 

levels. 

2.2 Meteorological impact of the new cycle 

Figure 1 and Figure 2 show score changes and their statistical significance for the high-resolution 

forecast (HRES) and the ensemble forecast (ENS), respectively. HRES is run at TCo1279 resolution 

(corresponding to a horizontal grid spacing of about 9 km) and ENS at TCo639 (corresponding to a 

horizontal grid spacing of about 18 km). 

The goal for the implementation of single precision was neutrality in HRES scores, together with major 

computational cost savings. Neutrality would be demonstrated in an HRES scorecard with 

approximately a third of the boxes being grey, a third red and a third blue, and with little more than 5% 

of the red and blue boxes being statistically significant at the 5% significance level (indicated by 

triangles). As can be seen in Figure 1, this has largely been achieved. A possible exception is a 

degradation (typically less than 1%) in stratospheric extratropical geopotential height scores. 

The increase in vertical resolution from 91 to 137 levels has been introduced to all ENS forecasts in the 

medium to the extended range. The ENS scorecard is shown in Figure 2. The change leads to statistically 

significant improvements to many ENS scores of about 0.5–2% throughout most of the free atmosphere. 

Stratospheric temperature scores are greatly improved, typically by 5–20%. This is, among other things, 

due to a weaker growth of temperature biases because the ENS can better resolve gravity waves in the 

vertical. The mean cooling difference below 600 hPa acts to decrease the warm bias around 850 hPa. It 

improves tropical medium-range scores at that level by over 6%. It does also slightly increase the 

tropical near-surface cool bias, and this is reflected in the 2-metre temperature scores, which are 

degraded by up to 1% by day 14. Ten-metre wind scores are also slightly degraded by 0.1–0.3%. 

Tropical cyclones show reduced intensity errors. This is largely associated with reduced bias. There is 

a mean reduction of about 2 hPa in central pressure in the medium range, increased spread, and improved 

reliability as measured by the spread-error agreement. The cycle is neutral in terms of track errors.  

The impact of IFS single precision on extended-range forecast biases and scores is neutral, confirming 

that IFS single precision can be used to reduce the cost of extended-range forecasts without any 

significant trade-offs in forecast quality. The increase to 137 vertical levels significantly improves the 

mean state of the upper-atmosphere in extended-range reforecasts by reducing the magnitude of cold 
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bias in the upper troposphere/lower stratosphere. Furthermore, the increased vertical resolution increases 

the amplitude of the Madden–Julian Oscillation (MJO), which is a key source of sub-seasonal 

predictability. Out to the extended range, the amplitude of the MJO is better sustained: the amplitude 

loss by day 15 is now about 15% rather than the previous value of about 20%. There is also an increase 

in MJO spread, improved reliability and better scores (Figure 3). These improvements to the MJO are 

largely driven by improvements to the tropical zonal winds at 200 hPa.  

3 Verification of upper-air medium-range forecasts 

3.1 ECMWF scores  

Figure 4 shows the evolution of the skill of the high-resolution forecast of 500 hPa height over Europe 

and the extratropical northern and southern hemispheres since 1981. Each point on the curves shows the 

forecast range at which the monthly mean (blue lines) or 12-month mean centred on that month (red 

line) of the anomaly correlation (ACC) between forecast and verifying analysis falls below 80%. In both 

extratropical hemispheres, in 2020-21 the score has surpassed all previous 12-month values. This is 

mainly due to improvements from model cycle 46r1, which was implemented in June 2019 (Sleigh et 

al., 2019), and, to a lesser degree, due to model cycle 47r1, which was implemented in June 2020 

(Haiden et al., 2021). In Europe, the score exhibits larger interannual variations, as expected, but when 

averaged over the most recent 2-yr period, it also has reached the highest level seen so far.    

A complementary measure of performance is the root mean square (RMS) error of the forecast. Figure 

5 shows RMS errors for both extratropical hemispheres of the six-day forecast and the persistence 

forecast. In both hemispheres, the 12-month running mean RMS error of the six-day forecast has reached 

its lowest values relative to the RMS error of persistence. In the southern hemisphere, also the absolute 

level of RMS error is the lowest seen so far. 

Figure 6 shows the time series of the average RMS difference between four- and three-day (blue) and 

six- and five-day (red) forecasts from consecutive days of 500 hPa forecasts over Europe and the 

northern extratropics. This illustrates the inconsistency between successive 12 UTC forecasts for the 

same verification time. Values have slightly increased in both hemispheres after a minimum in 2019. 

The magnitude of the increase is such that it may still be due to interannual variability as seen in previous 

years. Further monitoring will show if the trend persists.  

The quality of ECMWF forecasts in the upper atmosphere in the northern hemisphere extratropics is 

shown through time series of temperature and vector wind scores at 50 hPa in Figure 7. The RMSE is 

close to its lowest values for both parameters. Comparison with other centres in terms of 100 hPa 

temperature scores (Figure 8, top panel) show that ECMWF has increased its lead in recent years. 

Stratospheric scores for some parameters improved substantially due to changes made in cycles 46r1 

and 47r1 by reducing long-standing biases in the stratosphere (Sleigh et al., 2020). The centre panel in 

Figure 8 shows that HRES stratospheric geopotential scores have improved markedly in 2019 and 2020. 

The bottom panel in Figure 8 shows that in the upper stratosphere also the anomaly correlation 

improved.    

The trend in ENS performance is illustrated in Figure 9, which shows the evolution of the continuous 

ranked probability skill score (CRPSS) for 850 hPa temperature over Europe and the northern 
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hemisphere. Both in Europe and the northern extratropics, the 12-month running mean of this score has 

reached new record levels. In the northern extratropics, also the 3-month values have reached a new 

high in the winter 2020-21. It is worth noting that the winter maxima are the main drivers of interannual 

variability, while the summer minima give a good indication of the longer-term trend. Starting in 2019, 

the extratropical summer minima are generally at a higher level than before.      

In a well-tuned ensemble system, the RMS error of the ensemble mean forecast should, on average, 

match the ensemble standard deviation (spread). The ensemble spread and ensemble-mean error over 

the extratropical northern hemisphere for last winter, as well as the difference between ensemble spread 

and ensemble-mean error for the last three winters, are shown in Figure 10. Both for 500 hPa 

geopotential height and 850 hPa temperature, forecasts show a good overall match between spread and 

error. For 500 hPa geopotential, the match between spread and error in DJF 2021 is better than in 

previous years but this could be due to interannual variability. 

A good match between spatially and temporally averaged spread and error is necessary but not sufficient 

for a well-calibrated ensemble. It should also be able to capture day-to-day changes in predictability, as 

well as their geographical variations. This can be assessed using spread-reliability diagrams. Forecast 

values of spread over a given region and time period are binned into equally populated spread categories, 

and for each bin the average error is determined. In a well-calibrated ensemble, the resulting line is close 

to the diagonal. Figure 11 and Figure 12 show spread-reliability plots for 500 hPa geopotential and 850 

hPa temperature for different global models. Spread reliability generally improves with lead time. At 

day 1 (left panels), forecasts are only moderately skilful in ‘predicting’ the average error, resulting in 

curves that deviate significantly from the diagonal, while at day 6 (right panels) most models are 

capturing spatio-temporal variations in error rather well. Overall, ECMWF performs best, with its spread 

reliability closest to the diagonal. The stars in the plots mark the average values, corresponding to Figure 

10, and ideally should lie on the diagonal, and as close to the lower left corner as possible. In this regard 

ECMWF performs best among the global models with the exception of 850 hPa temperature at day 1, 

where the Japan Meteorological Agency (JMA) forecast has the lowest error (although ECMWF has 

slightly better overall match between error and spread).  

To create a benchmark for the ENS, the CRPS is also computed for a ‘dressed’ ERA5 forecast. This 

allows to better distinguish the effects of IFS developments from those of atmospheric variability and 

produces a more robust measure of ENS skill. The dressing uses the mean error and standard deviation 

of the previous 30 days to generate a Gaussian distribution around ERA5. Figure 13 shows the evolution 

of CRPS skill of the ENS relative to the ERA5 reference for some upper-air parameters.  Both at forecast 

days 5 (upper panel) and 10 (lower panel), the effect of 46r1 in 2019 is clearly visible, leading to a 

forecast performance which is at its highest level so far. In 2020-21, values remained roughly at the 

same level, with some variability superimposed. 

The forecast performance in the tropics, as measured by RMS vector errors of the wind forecast with 

respect to the analysis, is shown in Figure 14. Both the 200 hPa and 850 hPa errors have reached, or are 

close to, their lowest values. Scores for wind speed in the tropics are generally sensitive to inter-annual 

variations of tropical circulation systems such as the Madden-Julian oscillation, or the number of tropical 

cyclones.     
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3.2 WMO scores - comparison with other centres  

The model inter-comparison plots shown in this section are based on the regular exchange of scores 

between WMO designated global data-processing and forecasting system (GDPFS) centres under WMO 

Commission for Observation, Infrastructure and Information Systems (Infrastructure Commission) 

auspices, following agreed standards of verification.  

Figure 15 shows time series of such scores for 500 hPa geopotential height in the northern and southern 

hemisphere extratropics. Over the period shown, errors have decreased for all models, while ECMWF 

continues to maintain its lead.  

WMO-exchanged scores also include verification against radiosondes. Figure 16 (Europe), and Figure 

17 (northern hemisphere extratropics) show 500 hPa geopotential height and 850 hPa wind forecast 

errors averaged over the past 12 months. While ECMWF does not lead at all forecast ranges, overall it 

has the best performance in the medium-range when verified against observations.  

The WMO model intercomparison for the tropics is summarised in Figure 18 (verification against 

analyses) and Figure 19 (verification against observations), which show vector wind errors for 250 hPa 

and 850 hPa. When verified against the centres’ own analyses, the JMA forecast has the lowest error in 

the short range (day-2) while in the medium-range, both ECMWF and JMA have comparable skill in 

the tropics. In the tropics, verification against analyses (Figure 18) is sensitive to details of the analysis 

method, in particular its ability to extrapolate information away from observation locations. When 

verified against observations (Figure 19), the ECMWF forecast has the smallest overall error in the 

medium range. 

3.3 CAMS scores  

In 2021, Copernicus Atmosphere Monitoring Service (CAMS) upper-air scores have been added to the 

set of metrics routinely verified and monitored. CAMS uses the same model cycle as HRES but has 

lower horizontal resolution (40 km grid spacing), does not use the EDA, has prognostic aerosols 

interacting with radiation, and only goes out to day 5. Figure 20: Anomaly correlation of 500 hPa 

geopotential in the northern hemisphere extratropics at day 5. CAMS forecast (red, dashed) shown in 

comparison to the HRES (red) and forecasts from other global centres. shows that in terms of 500 hPa 

geopotential in the extratropics, CAMS forecasts rank 3rd behind HRES and the Met Office, ahead of 

other global centres’ forecasts. In some continental areas in the tropics such as India, and parts of Africa 

and South America, CAMS slightly outperforms HRES for lower atmospheric (850 hPa) temperature, 

indicating the benefit of prognostic aerosol on the meteorological forecast. Routine verification of the 

CAMS atmospheric composition forecast is carried out by the CAMS Evaluation and Quality Assurance 

(EQA) with reports being published at https://atmosphere.copernicus.eu/eqa-reports-global-services .  

4 Weather parameters and ocean waves 

4.1 Weather parameters – high-resolution and ensemble 

The supplementary headline scores for deterministic and probabilistic precipitation forecasts are shown 

in Figure 21. The top left panel shows the lead time at which the stable equitable error in probability 

space (SEEPS) skill for the high-resolution forecast for precipitation accumulated over 24 hours over 
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the extratropics drops below 45%. The threshold has been chosen in such a way that the score measures 

the skill at a lead time of 3–4 days. For comparison the same score is shown for ERA5. The top right 

panel shows the score difference between HRES and ERA5. The bottom left panel shows the lead time 

at which the CRPSS for the probability forecast of precipitation accumulated over 24 hours over the 

extratropics drops below 10%, the bottom right panel shows the lead time where the Diagonal Skill 

Score (DSS) drops below 20%. The ENS thresholds have been chosen in such a way that the scores 

measure the skill at a lead time of about 7 days. All plots are based on verification against SYNOP 

observations.  

The deterministic precipitation forecast has reached its highest level of skill so far. There is considerable 

variation in the score due to atmospheric variability, as shown by comparison with the ERA5 reference 

forecast (black line in Figure 21, top left panel). By taking the difference between the operational and 

ERA5 scores, much of this variability is removed, and the effect of model upgrades is seen more clearly 

(upper right panel in Figure 21). The positive effect of cycle 46r1 shows up as a substantial increase 

over the year 2019.   

The probabilistic precipitation headline score CRPSS (lower left panel in Figure 21) shows a long-term 

improvement as well. However, the positive effect from cycle 46r1 is not as readily seen. It should be 

noted that in addition to the difference HRES vs ENS also the scores used (SEEPS vs CRPSS) measure 

different aspects of the forecast. SEEPS, as a categorical score in probability space, does not penalize 

errors at high precipitation values as much as the CRPSS. The DSS (lower right panel) measures, similar 

to SEEPS, errors in probability space and puts more weight on the discrimination aspect of the forecast, 

while the CRPSS is more sensitive to the reliability/calibration of the forecast. The discrimination ability 

of the ENS has in fact reached its highest value so far in 2020 (as seen in the DSS), but the reliability 

has decreased somewhat so that the CRPSS has not increased in the same manner.         

ECMWF performs a routine comparison of the precipitation forecast skill of ECMWF and other centres 

for both the high-resolution and the ensemble forecasts using the TIGGE data archived in the 

Meteorological Archival and Retrieval System (MARS). Results using these same headline scores for 

the last 12 months show both the HRES and ENS leading with respect to the other centres (Figure 22). 

ECMWF’s probabilistic precipitation forecasts retain positive skill beyond day 9.  

Trends in mean error (bias) and standard deviation for 2 m temperature, 2 m dewpoint, total cloud cover, 

and 10 m wind speed forecasts over Europe are shown in Figure 23 to Figure 26. Verification is 

performed against SYNOP observations. The matching of forecast and observed value uses the nearest 

grid-point method. A standard correction of 0.0065 K m-1 for the difference between model orography 

and station height is applied to the temperature forecasts.  

For 2 m temperature (Figure 23), the daytime negative bias in spring has been reduced, while the level 

of error standard deviation has not changed much. For 2 m dewpoint (Figure 24), the error standard 

deviation has increased recently. For total cloud cover (Figure 25) there has been little change, both in 

terms of error standard deviation and bias. The error standard deviation of 10 m wind speed has slightly 

decreased (Figure 26). 

ERA5 is useful as a reference forecast for the HRES, as it allows filtering out some of the effects of 

atmospheric variations on scores. Figure 27 shows the evolution of skill at day 5 relative to ERA5 in the 

northern hemisphere extratropics for various upper-air and surface parameters. The metric used is the 
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error standard deviation. Curves show 12-month running mean values. Improvements in near-surface 

variables are generally smaller than those for upper-air parameters, partly because they are verified 

against SYNOP, which implies a certain representativeness mismatch that is a function of model 

resolution. For the upper-air variables (verification against analysis), the positive effect from 46r1 is 

visible but there is a large drop in the second half of 2020 not tied to a particular model cycle. This has 

been investigated and appears to be related to atmospheric variability, notably an unusually high Arctic 

Oscillation index in JFM 2020. With this flow pattern, the HRES outperformed ERA5 somewhat more 

than usual during this particular winter period. A similar feature (although less pronounced) has been 

observed for some of the other centres. The actual improvement from 46r1 is therefore closer to the 

difference in skill after and before the ‘top-hat’ shape.   

The fraction of large 2 m temperature errors in the ENS has been adopted as an additional ECMWF 

headline score. An ENS error is considered ‘large’ whenever the CRPS exceeds 5 K. Figure 28 shows 

that in the annual mean (red curve) this fraction has decreased from about 7% to 4.5% over the last 15 

years, and that there are large seasonal variations, with values in winter more than twice as high as in 

summer. The beneficial effect of the resolution upgrade in 2016 is apparent, and some smaller 

improvements were achieved by more recent model upgrades. 

A similar measure of the skill in predicting large 10 m wind speed errors in the ENS is shown in Figure 

29. Here, a threshold of 4 m/s for the CRPS is used, to obtain similar fractions as for temperature. As 

for temperature, the 2016 resolution upgrade resulted in a substantial decrease of the large error fraction. 

It is not yet clear whether the most recent further improvement driven by the winter 2020-21 indicates 

an actual reduction in skill or is mainly due to atmospheric variability.                      

4.2 Ocean waves 

The quality of the ocean wave model analysis and forecast is shown in the comparison with independent 

ocean buoy observations in Figure 30. While errors in 10 m wind speed have not become smaller in the 

last 2-3 years, wave height forecasts show a continued improving trend. This is also seen in the 

verification against analysis (Figure 31). Across lead times, forecast skill has reached the highest level 

so far. 

ECMWF is the WMO Lead Centre for Wave Forecast Verification, and in this role, it collects forecasts 

from wave forecasting centres to verify them against buoy observations. The forecast dataset has now 

become sufficiently long such that meaningful time-series plots can be shown. In the extratropics (Figure 

32), ECMWF generally leads other centres in significant wave height, while for peak period ECMWF 

is within the bundle of models. In the tropics (Figure 33), ECMWF is narrowly leading in terms of peak 

period, and ranking 2nd for significant wave height. For lead times other than the 72 h shown, the 

ranking is similar. The difference in ranking between extratropics and tropics is partially due to different 

wave characteristics and partly due to the different distribution of buoys in terms of proximity to coasts 

between extratropics and tropics.   

A comprehensive set of wave verification charts is available on the ECMWF website at 

http://www.ecmwf.int/en/forecasts/charts 

under ‘medium-range verification’ (select parameter ‘Ocean waves’). Verification results from the 

WMO Lead Centre for Wave Forecast Verification can be found at 
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https://confluence.ecmwf.int/display/WLW/WMO+Lead+Centre+for+Wave+Forecast+Verification+L

C-WFV 

5 Severe weather 

Supplementary headline scores for severe weather are: 

• The skill of the Extreme Forecast Index (EFI) for 10 m wind speed verified using the relative 

operating characteristic area (Section 5.1) 

• The tropical cyclone position error for the high-resolution forecast (Section 5.2) 

5.1 Extreme Forecast Index (EFI) 

The Extreme Forecast Index (EFI) was developed at ECMWF as a tool to provide early warnings for 

potentially extreme events. By comparing the ensemble distribution of a chosen weather parameter to 

the model’s climatological distribution, the EFI indicates occasions when there is an increased risk of 

an extreme event occurring. Verification of the EFI has been performed using synoptic observations 

over Europe from the GTS. An extreme event is judged to have occurred if the observation exceeds the 

95th percentile of the observed climate for that station (calculated from a moving 15-year sample). The 

ability of the EFI to detect extreme events is assessed using the relative operating characteristic (ROC). 

The headline measure, skill of the EFI for 10 m wind speed at forecast day-4 (24-hour period 72–96 

hours ahead), is shown by the blue lines in the left column of Figure 34 (top), together with results for 

days 1–3 and day 5. Corresponding results for 24-hour total precipitation (centre) and 2 m temperature 

(bottom) are shown as well. Each plot contains seasonal values, as well as the four-season running mean, 

of ROC area skill scores. For all three parameters, the 12-month average skill at day 5 (red curves) has 

reached the highest values ever in 2020-21. This has been achieved even for 2m temperature, where the 

absolute level of skill was already above 0.9 in recent years. 

A complementary way of verifying extremes is to use the Diagonal Elementary Skill Score DESS 

(Bouallegue et al., 2018), as shown in the right column of Figure 34 for the same three variables. It is 

based on verification in probability space and, like the ROC area, it emphasizes the discrimination aspect 

of the forecast. As for the EFI, the 95th quantile is used, but for wind and temperature, instantaneous 

rather than daily averages are used. Another difference between the two methods is that in the 

computation of the DESS, observation uncertainty (representativeness) has been explicitly taken into 

account using the method described in Bouallegue et al. (2020). 

It can be seen that also in terms of the DESS metric, forecast skill has continued to increase in recent 

years. Medium-range (day 5, red curves) performance has reached new high points for all three 

parameters in 2020-21.  

5.2 Tropical cyclones 

The tropical cyclone position error for the 3-day high-resolution forecast is one of the two supplementary 

headline scores for severe weather. The average position errors for the high-resolution medium-range 

forecasts of all tropical cyclones (all ocean basins) are shown in Figure 35. Errors in the forecast central 
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pressure of tropical cyclones are also shown. The comparison of HRES and ENS control (central four 

panels) demonstrates the benefit of higher resolution for some aspects of tropical cyclone forecasts. 

The HRES position error at day 3 (top panels, Figure 35) has slightly decreased compared to the previous 

year but not yet reached the low level of two years earlier. At day 5, errors have increased. However, 

comparison with ERA5 (grey curves) shows that this is due to variations in predictability. Relative to 

ERA5, the HRES has improved both at day 3 and at day 5. The HRES mean absolute error of intensity 

has decreased as well, but comparison with ERA5 shows that this improvement has been smaller than 

for ERA5.   

The bottom panel of Figure 35 shows the spread and error of ensemble forecasts of tropical cyclone 

position. For reference, the HRES error is also shown. At day 3, the forecast continues to be slightly 

underdispersive, however for day 5 the match between spread and error is very good. 

The ensemble tropical cyclone forecast is presented on the ECMWF website as a strike probability: the 

probability at any location that a reported tropical cyclone will pass within 120 km during the next 

240 hours. Verification of these probabilistic forecasts for the three latest 12-month periods is shown in 

Figure 36. Results show a decrease in reliability compared to the two previous years (top panel). Skill 

is shown by the ROC and the modified ROC, the latter using the false alarm ratio (fraction of yes 

forecasts that turn out to be wrong) instead of the false alarm rate (ratio of false alarms to the total 

number of non-events) on the horizontal axis. This removes the reference to non-events in the sample 

and shows more clearly the reduction in false alarms in those cases where the event is forecast. In terms 

of ROC, strike probability skill has slightly increased, while in terms of modified ROC, results are in-

between those of the previous two years.   

6 Monthly and seasonal forecasts 

6.1 Monthly forecast verification statistics and performance 

Figure 37 shows the probabilistic performance of the monthly forecast over the extratropical northern 

hemisphere for summer (JJA, top panels) and winter (DJF, bottom panels) seasons for week 2 (days 12–

18, left panels) and week 3+4 (days 19–32 right panels). Curves show the ROC score for the probability 

that the 2 m temperature is in the upper third of the climate distribution in summer, and in the lower 

third of the climate distribution in winter. It is a measure of the ability of the model to predict warm 

anomalies in summer and cold anomalies in winter. For reference, the ROC score of the persistence 

forecast is also shown in each plot. Forecast skill for week 2 exceeds that of persistence on average by 

5-10%, for weeks 3 to 4 (combined) by 0-5%. In weeks 3 to 4 (14-day period), summer warm anomalies 

appear to have slightly higher predictability than winter cold anomalies. In 2020, forecast skill above 

persistence was generally quite high and near the upper end of values seen in the past. Week 2 forecast 

skill for winter cold anomalies has been the highest so far in absolute terms.     

Because of the low signal-to-noise ratio of real-time forecast verification in the extended range (Figure 

37), re-forecasts are a useful additional resource for documenting trends in skill. Figure 38 shows the 

skill of the ENS in predicting 2 m temperature anomalies in week 3 in the northern extratropics. This is 

an additional headline score of ECMWF which was recommended by the TAC Subgroup on 

Verification. Verification against both SYNOP observations and ERA5 analyses shows that there has 
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been a substantial increase in skill from 2005-2012, and little change (against analysis), and a slight 

decrease (against observations) thereafter. However, a marked increase is seen in 2020, which is mainly 

due to ERA5 replacing ERA-Interim as initial condition for the reforecasts. Due to this change, the 

reforecast skill has in a way ‘caught up’ again and has become more representative of real-time forecast 

skill. Note also that the verification is based on a sliding 20-year period and is therefore less sensitive to 

changes from year to year than the real-time forecast evaluation, but some sensitivity remains, e.g. due 

to major El Niño events falling within, or dropping out of, the sliding period. 

In 2021, skill has increased even further, which appears to be a combination of the switch to ERA5 

initial conditions (only 9 months of which were included in the 2020 value), the sliding period, and 

possibly some beneficial effect from model cycle 47r1, although according to e-suite evaluation no 

significant improvement was expected in terms of this specific score. 

An evaluation of forecast skill from the medium to the extended range in terms of large-scale Euro-

Atlantic regimes and their effect on severe cold anomalies in Europe has been given by Ferranti et al. 

(2018). 

Comprehensive verification for the monthly forecasts is available on the ECMWF website at: 

http://www.ecmwf.int/en/forecasts/charts  

6.2 Seasonal forecast performance 

6.2.1 Seasonal forecast performance for the global domain 

The current version SEAS5 of the seasonal component of the IFS (implemented in November 2017) 

includes updated versions of the atmospheric (IFS) and interactive ocean (NEMO) models and adds the 

interactive sea ice model LIM2. While re-forecasts span 36 years (from 1981 to 2016), the re-forecast 

period used to calibrate the forecasts when creating products uses the more recent period 1993 to 2016. 

Compared to the previous version, SEAS5 shows an improvement in SST drift, especially in the tropical 

Pacific, and improvements in the prediction skill of Arctic sea ice.  

A set of verification statistics based on re-forecast integrations from SEAS5 has been produced and is 

presented alongside the forecast products on the ECMWF website at 

www.ecmwf.int/en/forecasts/charts 

by choosing ‘Verification’ under the header ‘Long Range’. A comprehensive user guide for SEAS5 is 

provided at:  

https://www.ecmwf.int/sites/default/files/medialibrary/2017-10/System5_guide.pdf 

6.2.2 The 2019–2020 El Niño forecasts 

Summer and autumn of 2020 were characterized by a switch from positive to negative SST anomalies 

in the eastern tropical Pacific. While this scenario was among those given by the SEAS5 ensemble 

forecast in May 2020 (Figure 39, top row), the model suggested rather a smaller magnitude of the 

negative anomalies, in particular the forecast issued in August 2020 (Figure 39, 2nd row). The forecast 

issued in autumn, on the other hand, predicted some further cooling, whereas the La Nina conditions 
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had actually reached their peak already in October 2020. The forecast of the return to neutral/warm 

conditions in the beginning of 2021 was then well predicted. The C3S multi-model ensemble, due to its 

naturally larger spread, better covers the observed evolution but also provides less clear guidance 

because of its large spread.   

6.2.3 Tropical storm predictions from the seasonal forecasts 

The 2020 Atlantic hurricane season had a total of 30 named storms, which is the highest number 

recorded, including 14 hurricanes and 7 major hurricanes. The accumulated cyclone energy index (ACE) 

was about 150% of the past 10-year (2010-2019) climate average (Figure 40) which makes it a very 

active, but not record-breaking season. Seasonal tropical storm predictions from SEAS5 indicated a 

normal level of activity over the Atlantic (ACE of about 100% (+/- 40%) of the past 10-year average). 

Similarly, the number of tropical storms (30) which formed in 2020 was strongly underpredicted (11.4) 

by SEAS5. The following forecasts, issued in July and August, also predicted a normal or slightly below 

average season. This poor seasonal forecast can be related to the difficulty of SEAS5 to properly 

reproduce long-term trends and the lower impact of Atlantic SSTs on tropical storm frequency in 

SEAS5. In 2021, the SEAS5 products for tropical cyclones were revised to better account for the 

forecast’s inability to capture the observed trends. The correction involved generating forecast 

anomalies with respect to the most recent ten years, rather than the fixed period 1993–2016 as was the 

case previously.  

 

Figure 41 shows that SEAS5 predicted slightly above average activity over the eastern North Pacific, 

and below average activity over the western North Pacific (ACE of about 80% of the 2010-2019 climate 

average). The 2020 western Pacific typhoon season was a slightly below-average season producing 23 

storms, 10 typhoons, with an ACE about 20% below average, which is consistent with the SEAS5 

forecast. The eastern North Pacific hurricane season was a below-average season with an ACE 20% 

lower than climatology, while SEAS5 predicted normal tropical storm activity.  

6.2.4 Extratropical seasonal forecasts 

In contrast to the year before, where a very strong positive phase of the Indian Ocean Dipole (IOD) 

increased global long-range forecast skill, the seasonal forecast for boreal winter 2020-21 was generally 

poor over extratropical continents. Most notably, the strong cold anomaly over large parts of Siberia 

was not predicted. Here we compare an ensemble mean forecast with the actual outcome, so we cannot 

expect the magnitude of the observed anomalies to be captured, but also in terms of spatial patterns there 

was limited correspondence between forecast and analysis (Figure 42). Similar to SEAS5, most other 

centres predicted a warm anomaly in Siberia where a cold anomaly was observed. Some centres showed 

neutral conditions, so in a relative sense performed better. It is also worth noting that the coldest anomaly 

related to La Nina was located along the equator in the SEAS5 forecast, but further south in the analysis.  

Summer 2m temperature anomalies (Figure 43) were predicted reasonably well in terms of spatial 

pattern in North America. In Eurasia, however, the large positive anomaly stretching from Russia into 

Eastern and Northern Europe was not captured.   
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Since the ensemble mean carries only part of the information provided by an ensemble, we also look at 

the forecast distribution in the form of quantile (climagram) plots. Climagrams for Northern and 

Southern Europe for winter 2020-21 and summer 2021 are shown in Figure 44. Red squares indicate 

observed monthly anomalies. The November 2020 forecast for the winter season 2020-21 gave some 

indication of the warm anomalies observed both in Northern and Southern Europe in early winter. 

However, the shift to pronounced cold anomalies in Northern Europe in January and February was not 

captured. The May 2021 forecast for summer 2021 gave little indication of the large warm anomalies 

observed in Northern Europe, while the mode modest positive anomalies in Southern Europe were 

predicted well.    
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Figure 1: Summary score card for IFS Cycle 47r2. Score card for HRES cycle 47r2 versus cycle 47r1 verified by 

the respective analyses and observations at 00 and 12 UTC for 619 forecast runs in the period May 2020 to April 

2021. Yellow colouring indicates that symbols refer to the second score indicated at the top of the column. 
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Figure 2: Summary ENS score card for IFS Cycle 47r2. Score card for ENS cycle 47r2 versus cycle 47r1 verified 

by the respective analyses and observations at 00 UTC for 408 ENS forecast runs in the period November 2019 to 

April 2021. 
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Figure 3: Impact of increased vertical resolution (Tco319L137 vs Tco319L91) on the real-time multivariate 

Madden-Julian Oscillation index (Wheeler and Hendon, 2004) as a function of forecast lead time. Left: changes 

in the fair version of the continuous ranked probability skill score (FCRPSS), where positive values indicate 

increased RMM skill with L137. Right: changes in the mean amplitude of the bivariate RMM index, where positive 

values indicate increased RMM amplitude with L137. See also Rodwell et al. (2021). 
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Figure 4: Primary headline score for the high-resolution forecasts. Evolution with time of the 500 hPa geopotential 

height forecast performance – each point on the curves is the forecast range at which the monthly mean (blue lines) 

or 12-month mean centred on that month (red line) of the forecast anomaly correlation (ACC) with the verifying 

analysis falls below 80% for Europe (top), northern hemisphere extratropics (centre) and southern hemisphere 

extratropics (bottom). 
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Figure 5: Root mean square (RMS) error of forecasts of 500 hPa geopotential height (m) at day 6 (red), verified 

against analysis.  For comparison, a reference forecast made by persisting the analysis over 6 days is shown (blue). 

Plotted values are 12-month moving averages; the last point on the curves is for the 12-month period August 2020–

July 2021. Results are shown for the northern extra-tropics (top), and the southern extra-tropics (bottom). 
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Figure 6: A measure of inconsistency of the 500 hPa height forecasts over Europe (top) and northern extratropics 

(bottom). Curves show the monthly average RMS difference between forecasts for the same verification time but 

initialised 24 h apart, for 96–120 h (blue) and 120–144 h (red). 12-month moving average scores are also shown 

(in bold). 
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Figure 7: Model scores for temperature (top) and wind (bottom) in the northern extratropical stratosphere. Curves 

show the monthly average RMS temperature and vector wind error at 50 hPa for one-day (blue) and five-day (red) 

forecasts, verified against analysis. 12-month moving average scores are also shown (in bold). 
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Figure 8: Stratospheric scores at a lead time of +144 h. Top: model intercomparison of the 100 hPa temperature 

RMSE in the northern extratropics. Centre: difference in RMSE of geopotential between ERA5 and HRES at four 

different stratospheric levels. Bottom: difference in anomaly correlation of geopotential between HRES and ERA5 

at four different stratospheric levels. Curves in the top plot are 3-month running averages and in the other two plots 

12-month running averages.  

RMSE(ERA5) - RMSE(HRES) 

ACC(HRES) - ACC(ERA5) 
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Figure 9: Primary headline score for the ensemble probabilistic forecasts. Evolution with time of 850 hPa 

temperature ensemble forecast performance, verified against analysis. Each point on the curves is the forecast 

range at which the 3-month mean (blue lines) or 12-month mean centred on that month (red line) of the continuous 

ranked probability skill score (CPRSS) falls below 25% for Europe (top), northern hemisphere extratropics 

(bottom). 
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Figure 10: Ensemble spread (standard deviation, dashed lines) and RMS error of ensemble-mean (solid lines) for 

winter 2020–2021 (upper figure in each panel), and differences of ensemble spread and RMS error of ensemble 

mean for last three winter seasons (lower figure in each panel, negative values indicate spread is too small); 

verification is against analysis, plots are for 500 hPa geopotential (top) and 850 hPa temperature (bottom) over the 

extratropical northern hemisphere for forecast days 1 to 15.   
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Figure 11: Ensemble spread reliability of different global models for 500 hPa geopotential for the period August 

2020–July 2021 in the northern (top) and southern (bottom) hemisphere extra-tropics for day 1 (left) and day 6 

(right), verified against analysis. Circles show error for different values of spread, stars show average error-spread 

relationship.  
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Figure 12: As Figure 11 for 850 hPa temperature, and including the tropics. 
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Figure 13: Skill of the ENS at day 5 (top) and day 10 (bottom) for upper-air parameters in the northern extra-

tropics, relative to a Gaussian-dressed ERA5 forecast. Values are running 12-month averages, and verification is 

performed against own analysis. 
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Figure 14: Forecast performance in the tropics. Curves show the monthly average RMS vector wind errors at 

200 hPa (top) and 850 hPa (bottom) for one-day (blue) and five-day (red) forecasts, verified against analysis. 12-

month moving average scores are also shown (in bold). 
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Figure 15: WMO-exchanged scores from global forecast centres. RMS error of 500 hPa geopotential height over 

northern (top box) and southern (bottom box) extratropics. In each box the upper plot shows the two-day forecast 

error and the lower plot shows the six-day forecast error of model runs initiated at 12 UTC. Each model is verified 

against its own analysis. JMA = Japan Meteorological Agency, CMC = Canadian Meteorological Centre, UKMO 

= the UK Met Office, KMA = Korea Meteorological Administration, NCEP = U.S. National Centers for 

Environmental Prediction, DWD = Deutscher Wetterdienst. 
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Figure 16: WMO-exchanged scores for verification against radiosondes: 500 hPa height (top) and 850 hPa wind 

(bottom) RMS error over Europe and North Africa (annual mean August 2020–July 2021) of forecast runs initiated 

at 12 UTC. 
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Figure 17: As Figure 16 for the northern hemisphere extratropics. 
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Figure 18: WMO-exchanged scores from global forecast centres. RMS vector wind error over tropics at 250 hPa 

(top box) and 850 hPa (bottom box). In each box the upper plot shows the two-day forecast error and the lower 

plot shows the six-day forecast error of model runs initiated at 12 UTC. Each model is verified against its own 

analysis. 
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Figure 19: As Figure 18 for verification against radiosonde observations. 
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Figure 20: Anomaly correlation of 500 hPa geopotential in the northern hemisphere extratropics at day 5. 

CAMS forecast (red, dashed) shown in comparison to the HRES (red) and forecasts from other global 

centres. 

  

  

Figure 21: Supplementary headline scores (left column) and additional metrics (right column) for deterministic 

(top) and probabilistic (bottom) precipitation forecasts. The evaluation is for 24-hour total precipitation verified 

against synoptic observations in the extratropics. Curves show the number of days for which the centred 12-month 

mean skill remains above a specified threshold. The forecast day on the y-axis is the end of the 24-hour period 

over which the precipitation is accumulated. The black curve in the top left panel shows the deterministic headline 

score for ERA5, and the top right panel shows the difference between the operational forecast and ERA5 (blue). 

Probabilistic scores in the bottom row are the Continuous Ranked Probability Skill Score (CRPSS) and the 

Diagonal Skill Score (DSS). 
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Figure 22: Comparison of precipitation forecast skill for ECMWF (red), the Met Office (UKMO, blue), Japan 

Meteorological Agency (JMA, magenta) and NCEP (green) using the supplementary headline scores for 

precipitation shown in Figure 21. Top: deterministic; bottom: probabilistic skill. Curves show the skill computed 

over all available synoptic stations in the extratropics for forecasts from August 2020–July 2021. Bars indicate 

95% confidence intervals. 
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Figure 23: Verification of 2 m temperature forecasts against European SYNOP data on the GTS for 60-hour (night-

time, blue) and 72-hour (daytime, red) forecasts. Lower pair of curves shows bias, upper curves are standard 

deviation of error. 

 

Figure 24: Verification of 2 m dew point forecasts against European SYNOP data on the Global 

Telecommunication System (GTS) for 60-hour (night-time, blue) and 72-hour (daytime, red) forecasts. Lower pair 

of curves shows bias, upper curves show standard deviation of error. 
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Figure 25: Verification of total cloud cover forecasts against European SYNOP data on the GTS for 60-hour 

(night-time, blue) and 72-hour (daytime, red) forecasts. Lower pair of curves shows bias, upper curves show 

standard deviation of error. 

 

Figure 26: Verification of 10 m wind speed forecasts against European SYNOP data on the GTS for 60-hour 

(night-time, blue) and 72-hour (daytime, red) forecasts. Lower pair of curves shows bias, upper curves show 

standard deviation of error. 
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Figure 27: Evolution of skill of the HRES forecast at day 5, expressed as relative skill compared to ERA5. 

Verification is against analysis for 500 hPa geopotential (Z500), 850 hPa temperature (T850), and mean sea level 

pressure (MSLP), using error standard deviation as a metric. Verification is against SYNOP for 2 m temperature 

(T2M), 10 m wind speed (V10), and total cloud cover (TCC). 
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Figure 28: Evolution of the fraction of large 2m temperature errors (CRPS>5K) in the ENS at forecast day 5 in the 

extratropics. Verification is against SYNOP observations. 12-month running mean shown in red, 3-month running 

mean in blue. 

 

Figure 29: Evolution of the fraction of large 10m wind speed errors (CRPS>4m/s) in the ENS at forecast day 5 in 

the extratropics. Verification is against SYNOP observations. 12-month running mean shown in red, 3-month 

running mean in blue. 
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Figure 30: Time series of verification of the ECMWF 10 m wind forecast (top panel) and wave model forecast 

(wave height, bottom panel) verified against northern hemisphere buoy observations. The scatter index is the error 

standard deviation normalised by the mean observed value; a three-month running mean is used. 
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Figure 31: Ocean wave forecasts. Monthly score and 12-month running mean (bold) of ACC for ocean wave 

heights verified against analysis for the northern (top) and southern extratropics (bottom) at day 1 (blue), 5 (red) 

and 10 (green). 
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Figure 32: Verification of forecasts of wave height and peak wave period (upper panels) at +72 h using 

observations from wave buoys (lower panels). The scatter index (SI) is the standard deviation of error normalised 

by the mean observed value; plots show the SI for the 3-month period March-May 2020. METFR: Météo-France; 

JMA: Japan Meteorological Agency; ECCC: Environment and Climate Change Canada; BoM: Bureau of 

Meteorology, Australia; LOPS: Laboratory for Ocean Physics and Satellite remote sensing, France; NZMS: New 

Zealand Meteorological Service; DWD: Deutscher Wetterdienst, Germany; UKMO: Met Office, UK; NCEP: 

National Centers for Environmental Prediction, USA; NIWA: National Institute of Water and Atmosperic 

Research, New Zealand. 

 

 

   

Figure 33: As Figure 32, but for the tropics.  
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Figure 34: Verification of Extreme Forecast Index (EFI) against analysis (left column). Top panel: skill of the EFI 

for 10 m wind speed at forecast days 1 (first 24 hours) to 5 (24-hour period 96–120 hours ahead); skill at day 4 

(blue line) is the supplementary headline score; an extreme event is taken as an observation exceeding 95th 

percentile of station climate. Curves show seasonal values (dotted) and four-season running mean (continuous) of 

relative operating characteristic (ROC) area skill scores. Centre and bottom panels on the left show the equivalent 

ROC area skill scores for precipitation EFI forecasts and for 2 m temperature EFI forecasts. Diagonal elementary 

skill score (DESS) for the 95th percentile for the same three variables, taking observation uncertainty into account 

(right column). 
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Figure 35: Verification of tropical cyclone predictions from the operational high-resolution and ensemble forecast. 

Results are shown for all tropical cyclones occurring globally in 12-month periods ending on 31 May. Verification 

is against the observed position reported via the GTS. Top panel supplementary headline score – the mean position 

error (km) of the three-day high-resolution forecast. The error for day 5 is included for comparison. Centre four 

panels show mean error (bias) in the cyclone intensity (difference between forecast and reported central pressure; 

positive error indicates the forecast pressure is less deep than observed), mean absolute error of the intensity and 

mean and absolute error of cyclone motion speed for cyclone forecast both by HRES and ENS control.  Bottom 

panel shows mean position error of ensemble mean (mean of cyclones forecast by ensemble members) with respect 

to the observed cyclone (orange curve) and ensemble spread (mean of distances of ensemble cyclones from the 

ensemble mean; red curve); for comparison the HRES position error (from the top panel) is plotted as well (blue 

curve). For reference, errors of tropical cyclone forecasts by ERA5 are shown in grey. 
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Figure 36: Probabilistic verification of ensemble tropical cyclone forecasts at day 10 for three 12-month periods: 

July 2018–June 2019 (green), July 2019–June 2020 (blue) and July 2020–June 2021 (red). Upper panel shows 

reliability diagram (the closer to the diagonal, the better). The lower panel shows (left) the standard ROC diagram 

and (right) a modified ROC diagram, where the false alarm ratio is used instead of the false alarm rate. For both 

ROC and modified ROC, the closer the curve is to the upper-left corner, the better, indicating a greater proportion 

of hits, and fewer false alarms. 
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Figure 37: Verification of the monthly forecast against analysis. Area under the ROC curve for the probability that 

2 m temperature is in the upper third of the climate distribution in summer (top) and in the lower third in winter 

(bottom). Scores are calculated for each three-month season for all land points in the extra-tropical northern 

hemisphere. Left panels show the score of the operational monthly forecasting system for forecast days 12–18 (7-

day mean), and right panels for forecast days 19–32 (14-day mean). As a reference, lighter coloured lines show 

the score using persistence of the preceding 7-day or 14-day period of the forecast. 

 

Figure 38: Skill of the ENS in predicting weekly mean 2m temperature anomalies (terciles) in week 3 in the 

northern extratropics. Verification against ERA5 analysis shown in blue, verification against SYNOP 

observations shown in red. Verification metric is the Ranked Probability Skill Score.  
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Figure 39: ECMWF System 5 (left column), and Copernicus Climate Change Service multi-model (right column) 

seasonal forecasts of SST anomalies over the NINO 3.4 region of the tropical Pacific from (top to bottom rows) 

May 2019, August 2019, November 2019 and February 2020. The red lines represent the ensemble members; 

dotted blue line shows the subsequent verification. The C3S multi-model forecast includes forecasts from 

ECMWF, MetOffice, Meteo-France, CMCC, DWD, and NCEP. 



 Evaluation of ECMWF forecasts 

 

 

46 Technical Memorandum No.884 

 

 

 

Figure 40: Time series of accumulated cyclone energy (ACE) for the Atlantic tropical storm seasons July–

December 1993 to July–December 2021. Blue line indicates the ensemble mean forecasts and green bars show the 

associated uncertainty (±1 standard deviation); red dotted line shows observations. Forecasts are from SEAS5 of 

the seasonal component of the IFS: these are based on the 25-member re-forecasts; from 2017 onwards, they are 

from the operational 51-member seasonal forecast ensemble. Start date of the forecast is 1 June. Note that this plot 

is based on the new forecast calibration (based on the most recent 10 year running mean, rather than the fixed 

period 1993-2015 used before). 
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Figure 41: Forecast of tropical storm accumulated cyclone energy (ACE, normalized) issued in May 2020 for the 

six-month period June–November 2020. Green bars represent the forecast ACE in each ocean basin (ensemble 

mean); orange bars represent climatology. The values of each bar are written in black underneath. The black bars 

represent ±1 standard deviation within the ensemble distribution; these values are indicated by the blue number. 

The 51-member ensemble forecast is compared with the climatology. A Wilcoxon-Mann-Whitney (WMW) test is 

then applied to evaluate if the predicted ACE is significantly different from the climatology. The ocean basins 

where the WMW test detects significance larger than 90% have a shaded background. 
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Figure 42: Anomaly of 2 m temperature as predicted by the seasonal forecast from November 2020 for DJF 

2020/21 (upper panel) and verifying analysis (lower panel). Grey contours in the analysis indicate regions where 

anomalies exceed 1.5 standard deviations. 
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Figure 43: Anomaly of 2 m temperature as predicted by the seasonal forecast from May 2021 for JJA 2021 (upper 

panel) and verifying analysis (lower panel). Grey contours in the analysis indicate regions where anomalies exceed 

1.5 standard deviations. 
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Figure 44: Long-range forecast of 2 m temperature anomalies from November 2020 for DJF 2020–21 (left panels) 

and from May 2021 for JJA 2021 (right panels) for northern (top) and southern Europe (bottom). The forecast is 

shown in purple, the model climatology derived from the System-5 hindcasts is shown in grey, and the analysis in 

the 24-year hindcast period is shown in yellow and orange. The limits of the purple/grey whiskers and yellow band 

correspond to the 5th and 95th percentiles, those of the purple/grey box and orange band to the lower and upper 

tercile, and medians are represented by lines. The verification from operational analyses is shown as a red square. 

Areal averages have been computed using land fraction as a weight to isolate temperature variations over land. 
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A short note on scores used in this report 

A. 1  Deterministic upper-air forecasts 

The verifications used follow WMO CBS recommendations as closely as possible. Scores are computed 

from forecasts on a standard 1.5 × 1.5 grid (computed from spectral fields with T120 truncation) limited 

to standard domains (bounding co-ordinates are reproduced in the figure inner captions), as this is the 

resolution agreed in the updated WMO CBS recommendations approved by the 16th WMO Congress 

in 2011. When other centres’ scores are produced, they have been provided as part of the WMO CBS 

exchange of scores among GDPS centres, unless stated otherwise – e.g. when verification scores are 

computed using radiosonde data (Figure 16), the sondes have been selected following an agreement 

reached by data monitoring centres and published in the WMO WWW Operational Newsletter. 

Root mean square errors (RMSE) are the square root of the geographical average of the squared 

differences between the forecast field and the analysis valid for the same time. When models are 

compared, each model uses its own analysis for verification; RMSE for winds (Figure 16, Figure 18) 

are computed by taking the root of the sums of the mean squared errors for the two components of the 

wind independently. 

Skill scores are computed as the reduction in RMSE achieved by the model with respect to persistence 

(forecast obtained by persisting the initial analysis over the forecast range); in mathematical terms: 

SS = 100 ∗ (1 −
RMSE𝑓

2

RMSE𝑝
2) 

Figure 4 shows correlations in space between the forecast anomaly and the verifying analysis anomaly. 

Anomalies with respect to ERA-Interim analysis climate are available at ECMWF from early 1980s. 

For ocean waves (Figure 31) the climate has been also derived from the ERA-Interim analyses. 

A. 2  Probabilistic forecasts  

Events for the verification of medium-range probabilistic forecasts are usually defined as anomalies 

with reference to a suitable climatology. For upper-air parameters, the climate is derived from ERA-

Interim analyses for the 20-year period 1989–2008. Probabilistic skill is evaluated in this report using 

the continuous ranked probability skill score (CRPSS) and the area under relative operating 

characteristic (ROC) curve.  

The continuous ranked probability score (CRPS), an integral measure of the quality of the forecast 

probability distribution, is computed as  

𝐶𝑅𝑃𝑆 = ∫ [𝑃𝑓(𝑥) − 𝑃𝑎(𝑥)]
2
𝑑𝑥

∞

−∞
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where 𝑃𝑓 is forecast probability cumulative distribution function (CDF) and 𝑃𝑎 is analysed value 

expressed as a CDF. CRPS is computed discretely following Hersbach, 2000. CRPSS is then computed 

as 

𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆

𝐶𝑅𝑃𝑆𝑐𝑙𝑖𝑚
 

where CRPSclim is the CRPS of a climate forecast (based either on the ERA-Interim analysis or observed 

climatology). CRPSS is used to measure the long-term evolution of skill of the IFS ensemble (Figure 9) 

and its inter-annual variability (Figure 13). 

ROC curves show how much signal can be gained from the ensemble forecast. Although a single valued 

forecast can be characterised by a unique false alarm (x-axis) and hit rate (y-axis), ensemble forecasts 

can be used to detect the signal in different ways, depending on whether the forecast user is more 

sensitive to the number of hits (the forecast will be issued, even if a relatively small number of members 

forecast the event) or of false alarms (one will then wait for a large proportion of members to forecast 

the event). The ROC curve simply shows the false alarm and hit rates associated with the different 

thresholds (proportion of members or probabilities) used, before the forecast is issued (Figure 36). 

Figure 36 also shows a modified ROC plot of hit rate against false alarm ratio (fraction of yes forecasts 

that turn out to be wrong) instead of the false alarm rate (ratio of false alarms to the total number of non-

events). 

Since the closer to the upper left corner (0 false alarm, 100% hits) the better, the area under the ROC 

curve (ROCA) is a good indication of the forecast skill (0.5 is no skill, 1 is perfect detection). Time 

series of the ROCA are shown in Figure 37. 

The comparison of spread and skill (Figure 10 to Figure 12) takes into account the effect of finite 

ensemble size N by multiplying spread by the factor (N+1)/(N-1). 

A. 3 Weather parameters 

Verification of the deterministic precipitation forecasts is made using the newly developed SEEPS score 

(Rodwell et al., 2010). SEEPS (stable equitable error in probability space) uses three categories: dry, 

light precipitation, and heavy precipitation. Here “dry” is defined, with reference to WMO guidelines 

for observation reporting, to be any accumulation (rounded to the nearest 0.1 mm) that is less than or 

equal to 0.2 mm. To ensure that the score is applicable for any climatic region, the “light” and “heavy” 

categories are defined by the local climatology so that light precipitation occurs twice as often as heavy 

precipitation. A global 30-year climatology of SYNOP station observations is used (the resulting 

threshold between the light and heavy categories is generally between 3 and 15 mm for Europe, 

depending on location and month). SEEPS is used to compare 24-hour accumulations derived from 

global SYNOP observations (exchanged over the Global Telecommunication System; GTS) with values 

at the nearest model grid-point. 1-SEEPS is used for presentational purposes (Figure 21, Figure 22) as 

this provides a positively oriented skill score. 
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The ensemble precipitation forecasts are evaluated with the CRPSS (Figure 21, Figure 22). Verification 

is against the same set of SYNOP observations as used for the deterministic forecast.   

For other weather parameters (Figure 23 to Figure 26), verification data are European 6-hourly SYNOP 

data (area boundaries are reported as part of the figure captions). Model data are interpolated to station 

locations using bi-linear interpolation of the four closest grid points, provided the difference between 

the model and true orography is less than 500 m. A crude quality control is applied to SYNOP data 

(maximum departure from the model forecast has to be less than 25 K, 20 g/kg or 15 m/s for 

temperature, specific humidity and wind speed respectively). 2 m temperatures are corrected for 

differences between model and true orography, using a crude constant lapse rate assumption provided 

the correction is less than 4 K amplitude (data are otherwise rejected). 
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