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Introduction
• Telecommunications

• UK £33bn/year or ~1.5% GDP net economic contribution (Kelly, 2015)
• BT / Openreach responsible for ~90% of fixed line infrastructure

• Weather highlighted as a contributor to increased fault rates
• BT annual reports each year from 2013-2018
• Associated with service delays, disruptions and challenging conditions

• Initial goal: skillful forecasts of fault rates ~weeks ahead
• Enables Openreach to prepare for, e.g., fault rate spikes

• But does this solve the underlying challenge?
• Difficult to assign an economic value to fault rate forecast improvement, instead:

• Penalties if fail to hit regulated targets for fixing faults (‘RD3’) è target failures
• Avoid retaining excess fault repair capacity è avoidable costs

• Implications for forecast assessment
• Limitations of static “cost-loss” models (c.f., Richardson, 2000; Murphy 1985)



This talk
Part 1: Establishing a skillful fault rate forecast (national- and weekly- mean)

• Long-term climatology
• Weeks-ahead forecasting

Part 2: Estimating forecast value
• Avoiding unnecessary costs and performance failures

Aside: data normalization for commercial sensitivity 
• 1.0 week-1 = long term average weekly fault rate
• Repair capacity (# engineers) similarly scaled

Paper: Brayshaw, Halford, Smith, Jensen (in review, Met Apps)



Part 1a - Fault rate climatology
• As with many weather/climate impact problems, the impacted system is changing rapidly
• Total number of lines (~25M) lines fairly constant but…

• Four main line types: VOICE, VOICE_BB, MPF, NGA
• Different types è different technologies è different weather sensitivities

• System evolving rapidly (mix of line types, network hardening)
• Relevant observational data available late 2011 to end 2017
• Weekly resolution

èWant long homogeneous “synthetic” historic record (c.f., Cannon et al 2015 for wind power)

National weekly total VOICE fault rate, normalized by 2012-2017 mean



Part 1a - Fault rate climatology
• Construct multiple linear regression (fault rate against ERAInt UK-land area) by line type:

• Adjust to a “reference” system state in late 2017
• Sum over 3 line types: VOICE, VOICE_BB, MPF

• Good quality reconstruction (including residual)
• Simplify to meteorology-only problem (drop blue terms) è ‘synthetic’ record 1979-2017
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Part 1b - Fault rate forecast
• Focus on winter: higher fault rates and likely greater meteorological predictability
• ECMWF subseasonal forecast

• 20yr 11-member hindcast out to week 6
• Corresponds to forecasts launched Dec 2016 – Feb 2017 (model Cy43r1)
• Lead-time dependent mean bias correction

• Simple strategy:
• Predict NAO then use climatological NAO-faults relationship è estimate weekly fault rates
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Part 1b - Fault rate forecast
• Toy fault rate forecast model:

• Each ECMWF ensemble member classified high/neutral/low NAO (weekly)

• Corresponding NAO-based fault rate anomaly added to weekly climatological fault rate

• Deterministic = fault rate anomaly is a single value
• [Semi-]probabilistic = fault rate anomaly is a distribution

• Average over ensemble members
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Part 2 – Decisions and value
• Recall: concern is fixing faults promptly, not just predicting faults

• Toy model of decision process
• Target: fix a fraction (1-l) of incoming faults during any week
• Assume engineers only fix faults (“repair capacity”)
• Unfixed faults carryover into next week and must be fixed before new work
• Can employ ‘extra’ engineers (increase repair capacity) but with 1-week lead

• Aside - real decision is far more complex:
• Daily resolution
• Multi-objective (e.g., same engineers install new lines, with associated targets)
• Decisions on multiple time-horizons from ~week-4 to near real time
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Part 2 – Decisions model

Week 1 Week 2 …
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Part 2 – Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1

New faults, FR FR1

Target failures, a

s1

Need to decide r2 during week 1 
è locks in decision of repair assets one-week in advance

r2

a1 = Max(0, s1 + FR1 (1-l) – r1)



Part 2 – Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1 r2

New faults, FR FR1 FR2
f

Target failures, a

s1

a2
f = Max(0, s2 + FR2

f (1-l) – r2)

Forecast fault rate

Forecast failure rate

a1 = Max(0, s1 + FR1 (1-l) – r1)



Part 2 – Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1 r2

New faults, FR FR1 FR2
f

Target failures, a

s1

a2
f = Max(0, s2 + FR2

f (1-l) – r2)

Choose r2 as: Min
r2
(cfailα2 + crepairr2 )

rmin ≤ r2 ≤ rmax

Forecast fault rate

Forecast failure rate

a1 = Max(0, s1 + FR1 (1-l) – r1)



Part 2 – Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1 r2

New faults, FR FR1 FR2
f

Target failures, a a1 = Max(0, s1 + FR1 (1-l) – r1)

s1

a2
f = Max(0, s2 + FR2

f (1-l) – r2)

Choose r2 as:

Then step forward to calculate actual a2 using r2 and the actual fault rate FR2
Iterate over ‘perpetual winter’ from ECMWF hindcasts (neglect end years)

Forecast fault rate
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r2
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rmin ≤ r2 ≤ rmax



• Two parameter decision model: rmax, rmin

• If user has insufficient ability to respond, 
forecast has no added value (not shown)

• Experiment: constant contingency
• (rmax-rmin = 0.15 week-1)
• Vary minimum repair capacity (rmin)

• Operational:
• For a given repair capacity, improved 

forecasts reduce target failure rate 
(~10%, up to 100%?)

• è “Better” performance with given 
resources

• Planning:
• For a given target failure rate, 

improved forecasts reduce required 
repair capacity (~1%, up to 5%?)

• è “Reduced cost” for same 
performance level

Context: Annual staffing cost ~£500M, max 
penalty for failures up to ~£1M/day 

Part 2 – Decisions and value
Fixed contingency
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Conclusions
• Long term fault rate climatology

• “Zeroth order” prediction - possible and valuable

• Fault rate forecast 
• Simple scheme demonstrates skill possible in weeks 3-5 (for winter)

• Value for decisions
• Improved operations (fewer fails with same repair capacity) 
• Improved planning (smaller repair capacity needed for same performance)
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Cannon et al (2015 Rene Energy)

• Wider implications
• Value depends on ability of decision 

maker to respond and their objectives
• Integrated decision-forecast evaluation
• Errors linked: cost/loss model limitations
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