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Subseasonal forecasting:
Managing telecommunications fault risk
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Introduction e uRrgvaeEi%ogf

Telecommunications
- UK £33bn/year or ~1.5% GDP net economic contribution (Kelly, 2015)
« BT / Openreach responsible for ~90% of fixed line infrastructure

Weather highlighted as a contributor to increased fault rates
« BT annual reports each year from 2013-2018
» Associated with service delays, disruptions and challenging conditions

Initial goal: skillful forecasts of fault rates ~weeks ahead
- Enables Openreach to prepare for, e.g., fault rate spikes

But does this solve the underlying challenge?
- Difficult to assign an economic value to fault rate forecast improvement, instead:
« Penalties if fail to hit regulated targets for fixing faults (‘RD3’) =» target failures
» Avoid retaining excess fault repair capacity = avoidable costs

Implications for forecast assessment
« Limitations of static “cost-loss” models (c.f., Richardson, 2000; Murphy 1985)



This talk BB i

Part 1: Establishing a skillful fault rate forecast (national- and weekly- mean)
* Long-term climatology
- Weeks-ahead forecasting

Part 2: Estimating forecast value
» Avoiding unnecessary costs and performance failures

Aside: data normalization for commercial sensitivity

- 1.0 week! = long term average weekly fault rate
» Repair capacity (# engineers) similarly scaled

Paper: Brayshaw, Halford, Smith, Jensen (in review, Met Apps)



Part 1a - Fault rate climatology Bk

* As with many weather/climate impact problems, the impacted system is changing rapidly
» Total number of lines (~25M) lines fairly constant but...
* Four main line types: VOICE, VOICE_BB, MPF, NGA
 Different types = different technologies = different weather sensitivities
« System evolving rapidly (mix of line types, network hardening)
» Relevant observational data available late 2011 to end 2017
» Weekly resolution

=>Want long homogeneous “synthetic” historic record (c.f., Cannon et al 2015 for wind power)

National weekly total VOICE fault rate, normalized by 2012-2017 mean
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Part 1a - Fault rate cIimatoIogy B8 Reading

» Construct multiple linear regression (fault rate against ERAInt UK-land area) by line type:

FRAVOICE :ao/qlPS + a,PT -I-/C(YgT +a,W + aSWT\+ a6R}<+ a7< L+ ¢(0, g)

3-week-running-mean precip 2m Temperature 10m windspeed Normal residual
over threshold

(binary) # public holidays

Weekly precip over threshold 10m windspeed squared
(binary) 3-day relative humidity over threshold

* Adjust to a “reference” system state in late 2017
« Sum over 3 line types: VOICE, VOICE_BB, MPF
« Good quality reconstruction (including residual)
« Simplify to meteorology-only problem (drop blue terms) = ‘synthetic’ record 1979-2017
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Part 1b - Fault rate forecast B Reading

* Focus on winter: higher fault rates and likely greater meteorological predictability
« ECMWEF subseasonal forecast

« 20yr 11-member hindcast out to week 6

» Corresponds to forecasts launched Dec 2016 — Feb 2017 (model Cy43r1)

* Lead-time dependent mean bias correction

« Simple strategy:
 Predict NAO then use climatological NAO-faults relationship =» estimate weekly fault rates

NAO forecast skill (w.r.t. climatology) NAQ impact on fault rate
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Part 1b - Fault rate forecast

» Toy fault rate forecast model:
- Each ECMWF ensemble member classified high/neutral/low NAO (weekly)
« Corresponding NAO-based fault rate anomaly added to weekly climatological fault rate
» Deterministic = fault rate anomaly is a single value
» [Semi-]probabilistic = fault rate anomaly is a distribution

» Average over ensemble members

MAE skill score
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Part 2 — Decisions and value B

» Recall: concern is fixing faults promptly, not just predicting faults

* Toy model of decision process
 Target: fix a fraction (7-1) of incoming faults during any week

« Assume engineers only fix faults (“repair capacity”)
 Unfixed faults carryover into next week and must be fixed before new work

- Can employ ‘extra’ engineers (increase repair capacity) but with 1-week lead

 Aside - real decision is far more complex:

 Daily resolution
- Multi-objective (e.g., same engineers install new lines, with associated targets)

« Decisions on multiple time-horizons from ~week-4 to near real time



Part 2 — Decisions model B8 Reading

New faults, FR FR,

Work stack, s S; l

. Week 1 . Week 2 ‘ .

Repair assets, r M




Part 2 — Decisions model B8 Reading

New faults, FR FR;
Work stack, s s; l s, =s1+FRy—r4

. Week 1 Week 2 ‘ .
Repair assets, r r

Target failures, o a4 = Max(0, s; + FR; (1-1) —ry)



Part 2 — Decisions model Bl Reading

New faults, FR FR;
Work stack, s S l S; =8y +FRy—ry

. Week 1 Week 2 ‘ ‘
Repair assets, r r i

Target failures, o a4 = Max(0, s; + FR; (1-1) —ry)

Need to decide r, during week 1
=» locks in decision of repair assets one-week in advance



Part 2 — Decisions model B8 e
Forecast fault rate
New faults, FR FR, FR,f

Work stack, s s; l S, =54 + FR; *lﬁ

. Week 1 Week 2 ‘ .

Repair assets, r r r

Target failures, o o4 = Max(0, s4 + FR; (1-1) — ry) o, = Max(0, s, + FR,' (1-1) — 1)

Forecast failure rate



Part 2 — Decisions model B8 Reading
Forecast fault rate
New faults, FR FR, FR,f

Work stack, s s; l S, =54 + FR; *lﬁ

. Week 1 Week 2 ‘ .

Repair assets, r r i

Target failures, o o4 = Max(0, s4 + FR; (1-1) — ry) o, = Max(0, s, + FR,' (1-1) — 1)

Forecast failure rate

Choose 2 as. Min(cfaila2 + Crepairr2)
p)

rmin SrZ Srmax



Part 2 — Decisions model B8 Reading
Forecast fault rate
New faults, FR FR, FR,f

Work stack, s S l S, = sy + FR; *lﬁ

. Week 1 Week 2 ‘ ‘

Repair assets, r r Iy

Target failures, o« o4 = Max(0, s4 + FR; (1-1) — ry) o, = Max(0, s, + FR,' (1-1) — ry)

Forecast failure rate

Choose r2 as. Min(cfaila2 + Crepairr2)
p)

rmin SFZ Srmax

Then step forward to calculate actual a, using r, and the actual fault rate FR,
Iterate over ‘perpetual winter’ from ECMWF hindcasts (neglect end years)



Part 2 — Decisions and value

Fixed contingency

Two parameter decision model: ryax, Mmin

If user has insufficient ability to respond,
forecast has no added value (not shown)

Experiment: constant contingency
* (Fmax-Tmin = 0.15 week1)
« Vary minimum repair capacity (rmin)

Operational:

« For a given repair capacity, improved
forecasts reduce target failure rate
(~10%, up to 100%7?)

« =>» “Better” performance with given
resources

Planning:

« For a given target failure rate,
improved forecasts reduce required
repair capacity (~1%, up to 5%7?)

« = “Reduced cost” for same
performance level
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Context: Annual staffing cost ~£600M, max
penalty for failures up to ~£1M/day



Conclusions B8 Reading

» Long term fault rate climatology
« “Zeroth order” prediction - possible and valuable

» Fault rate forecast
« Simple scheme demonstrates skill possible in weeks 3-5 (for winter)

» Value for decisions
« Improved operations (fewer fails with same repair capacity)
« Improved planning (smaller repair capacity needed for same performance)

« Wider implications

« Value depends on ability of decision
maker to respond and their objectives

* Integrated decision-forecast evaluation Event occurs
* Errors linked: cost/loss model limitations No Yes
No 0 L
Take action
Yes C C-vL

Contact: d.j.brayshaw@reading.ac.uk; research.reading.ac.uk/met-enerqy/
Brayshaw, Halford, Smith, Jensen (in review, Met Apps)
Cannon et al (2015 Rene Energy)
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