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Background and Aims

Persistent drought and flood create adverse results in various
sectors, especially agriculture.

The aim of this study is to develop drought(/flood) monitoring
and prediction capability using near real-time precipitation and
atmospheric analysis as well as subseasonal predictions.
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Analysis data

Precipitation: Global Satellite Mapping "‘ GSM(COBP
of Precipitation (GSMaP) data (Aonashi et al. 2009) N

(available from JAXA web: http://sharaku.eorc.jaxa.jp/GSMaP/ )
Atmospheric analysis: JRA-55 (Kobayashi et al. 2015) ba o
RS

JAXA GLOBAL RAINFALL WATCH
RO TR
JEET T Last Undate: 23 Jan 2018 01:54:26 UTC

Version: GSMaP NRT Version 6
Period: 2001 — 2015

http://sharaku.eorc.jaxa.jp/GSMaP/



Prediction data

EEENETIE

Data Hindcast data
Period 2001- 2001- 2001-
2010 2015 2015
Model T639/319
Resolution T319L60 /L91* NO6L85
Freq. 3/month 2/weekly 4/month

Subseasonal-to-Seasonal

Ens. Size 5 11 3 y Sas

Prediction Project

(*T639 up to day 15 and T319 after day 15)
https://www.ecmwf.int/en/research/projects/s2s
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Methods: Keetch—Byram drought index (KBDI)

Drought index

The Keetch — Byram drought index (KBDI, Keetch and Byram,1968) was used
in this study. The index estimates the soil moisture deficit, thus it is a useful
indicator of drought conditions and wildfire risks. The index was calculated

using meteorological variables by taking into account evaporation and plant

transpiration.

KBDIt = KBDI" + DF! - RF!

KBDI evaporation rainfall
1-day before  transpiration

*

rainfall amount &
daily maximum surface temperature




KBDI monthly climatology (2001-2013)
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KBDI was calculated with GSMaP precipitation and JRA-55 Ts. 6



Predictive skill of KBDI (ECMWF model)
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Rank correlations (Kendall’s t) between observations and predictions with a 28-day
lead. Four consecutive 11-member ensemble mean predictions 7 days apart starting
from dates denoted above figures were verified.

KBDI predictive skills are generally high in the tropics including South and Southeast Asia.
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Skill improvement over persistent anomaly predictions
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éﬁ'!w‘ Same as the previous slide, but for rank correlation
R difference between model predictions and persisted
anomaly predictions.




Anomaly correlation coefficient: JMA control prediction, JIA
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Skill of Indonesian drought prediction

RMSE of KBDI predictions near Jakarta
ECMWF UKMO IMA
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Models generally overperform climatological predictions up to at least 10-day lead, however,
the model performance is a key to make a meaningful forecast.
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Indonesian drought and ENSO/IOD
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KBDI

KBDI
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Case study: 2006

Early dry season
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Late dry season
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ECMWEF predictions early
(15Jun, 13Jul) and late (310ct,
17Nov) dry seasons in 2006.
Thick lines: control members,
thin lines: perturbed
members.

2006:

EP-El Nino and positive
10D
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KBDI

KBDI

Case stuay: 2010

Early dry season
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ECMWEF predictions early
(15Jun, 13Jul) and late (310ct,
17Nov) dry seasons in 2010.
Thick lines: control members,
thin lines: perturbed
members.

2010:
Strong negative 10D
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Improvement rate of ECMWF forecasts

Skill enhancement due to ENSO and 10D
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Improvement rates are larger when both NINO3 and Dipole Mode Index
(DMI) are both large positive value (i.e., 2006 and 2015)
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* New products to monitor and predict the risk of drought based
on the KBDI| were developed using GSMaP, JRA-55 and S2S data.

» Skill evaluations of KBDI showed benefits of using S2S model
outputs in some regions.

* Drought forecast in Indonesia is expected to provide useful
information for decision making disaster risk managements.

* The subseasonal KBDI predictability arises from slow-varying
SST conditions (IOD and El Nino), in addition to the subseasonal
variability (e.g., MJO).

* For the drought prediction, substantial prediction information
provided from the real-time monitoring capability, S2S models
could add information/value to monitoring products.
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