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Forecasts from three operational centres
Winter temperatures (DJF) 2007-2013 in the UK

13 regions postprocessed jointly

Forecasts at 24h intervals, up to 15 days ahead

Each day and leadtime is postprocessed independently
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Multi-model ensemble predictions

Ensemble forecasts can sample the initial-condition uncertainty,
but not uncertainty arising from the choice of model.
For that, we need to combine the output from several ensemble

forecasts.
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All of these forecasts may have systematic biases and dispersion
errors, which also require correction.
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How can we combine multiple ensemble forecasts?

® Pool ensemble members into a single ‘superensemble’

® improvement has been shown to be due to extra information,
not just due to increased ensemble size

® bias correction relies on error cancelling

® |ess sharp - but more likely to contain the verifying
observation?
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How can we combine multiple ensemble forecasts?

® Model output statistics: use regression to estimate the
necessary correction

® Univariate - dependence structure must be specified separately
® Ensembles are often collinear - may only retain one

® Only uses ensemble means - information from ensemble spread
is lost

® Computationally very costly - relies on numerical optimisation
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A new postprocessing framework
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A new postprocessing framework
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A new postprocessing framework

Ensemble members: Yj|u; ~ MVN(u;, C;)
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A new postprocessing framework

Ensemble means: Y;|u; ~ MVN(u,, n'C;)
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A new postprocessing framework

Ensemble means: Y;|u; ~ MVN(y;, n'C;)
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A new postprocessing framework

Ensemble means: Y;|u; ~ MVN(y;, n'C;)

< Ho
oY il
d ' Q'Yz
1251
o¢
0«0 M3

Summary
000



Ensembles Framework Summary
0000 0000 [e]e]e}

A new postprocessing framework

Ensemble means: Y;|u; ~ MVN(y;, n'C;)
Ensembles: p;]€ ~ MVN(E,X)
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A new postprocessing framework

Ensemble means: Y;|¢ ~ MVN(&, X + n'C))
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A new postprocessing framework

Ensemble means: Y;|¢& ~ MVN(&,D;)
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A new postprocessing framework

Ensemble means: Y;|¢& ~ MVN(&,D;)
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A new postprocessing framework

Ensemble means: Y;|¢& ~ MVN(&,D;)
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A new postprocessing framework

Ensemble means: Y;|Yo + & ~ MVN(Y, + &, D))
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A new postprocessing framework

Ensemble means: Y;|Yo + & ~ MVN(Y, + &,D))
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Actual temperature: Yo ~ MVN(ex,T) Y;
Discrepancy: & ~ MVN(n, N)
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Posterior form

It can be shown that the posterior distribution of Yj is:
Yo’Y,’j, g’g ~ MVN(T,S)
with

S =T+ [A+Zp]""

T = S{I'_la +[AN+xp] !

Xp ) D'y —n] }
i=1

3

where p = (37, D)
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Discrepancy-adjusted consensus:
MVN (& —n,Zp + N)
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Posterior forecast:
Yo ~ MVN (7,S)
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The proposed framework has theoretical advantages...

® Flexible framework - each element can be estimated/specified
as user sees fit, and extension to multiple weather
quantities/sequential forecasting is (relatively) straightforward.

® Bayesian analysis follows from graphical representation of the
data structure

® No ‘black box' computations - all sources of uncertainty in the
postprocessed forecast are identifiable
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. as well as practical advantages

Substantial improvement over raw superensemble - although
marginally not as well calibrated as state of the art (NR)

Representation of joint spatial structure than either ensembles
(ECC) or observations (Schaake Shuffle) alone

Much less costly than NR which takes around 30 times as
long to run even in this toy example

Careful choice of training set based on synoptic weather
conditions can further improve performance
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