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Introduction

Goal:

Provide calibrated probabilistic predictions for a real-valued
quantity Y (e.g. cumulated precipitation amount) based on an
ensemble of predictions X = (X1, ... X)),
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Introduction

Goal:
Provide calibrated probabilistic predictions for a real-valued

quantity Y (e.g. cumulated precipitation amount) based on an
ensemble of predictions X = (X1, ... X)),

Requirement:
Sufficient training data available: (X1, Y1),...,(Xn, Ya)
Characteristics of IDR:

» Generic (non-parametric) method providing a competitive
benchmark for prediction (with respect to CRPS)

» Leads to calibrated probabilistic predictions (flat PIT
histogram)

» (Almost) No tuning parameters

» May be outperformed by carefully tuned parametric
postprocessing methods
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Fundamental assumption of IDR

“If the predictions increase we expect an increase of
the outcomes.”
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Making this intuition precise

“If the predictions increase...”

Partial order on the covariates:
x=(xt,...,x4), X' = (x{,...,x}) € RY

/ H /
x<px if x1<xg ...

y Xd SX‘/j
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Making this intuition precise

“If the predictions increase...”

Partial order on the covariates:
x=(xt,...,x4), X' = (x{,...,x}) € RY

Xgpx’ if x <xq, oen, xg < X5

“...we expect an increase of the outcomes.”

Stochastic order on predictive distributions: F, G cdfs
F=<G if F(z)> G(z)forall zeR.
Equivalent:

F=<G if Fla)<G a)forall ac(0,1).



Isotonic distributional regression (IDR)

Estimate the cdf-valued function X — Fx with
Fx = L(Y|X)
under the assumption that Fx is isotone, that is,

X<, X' = Fx=<Fx.
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Isotonic distributional regression (IDR)

Estimate the cdf-valued function X — Fx with
Fx = L(Y]|X)
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Isotonic distributional regression (IDR)

Estimate the cdf-valued function X — Fx with
Fx = L(Y]|X)
under the assumption that Fx is isotone, that is,
X<, X' =  Fx=Fx.

Minimization problem: Define Fx to be the isotone cdf-valued
Gx minimizing

1 n
— 3" CRPS(Gx;, Y))
i=1

Result: There exists a unique minimizer Fx which we call the IDR.
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Constructing the IDR
Let z € R. Minimizing

n

> (g:(Xe) = 1{Ye > 2})?

(=1

over all increasing functions g, : RY — R has a unique optimal
solution that can be computed by solving a quadratic programming
problem.
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Constructing the IDR
Let z € R. Minimizing

n

> (g:(Xe) = 1{Ye > 2})?

(=1

over all increasing functions g, : RY — R has a unique optimal
solution that can be computed by solving a quadratic programming
problem.

> Fx:z1—g,(X)is avalid cdf

> X — Fx is the IDR
Sidenote:
Closed form of the optimal solution for a total order (d = 1)

J

1
2,(X;) = minmax ———— S 1{Y; > z}.
£:(Xp) T;grpg.x(j_iﬂ); {Ve >z}
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Optimality properties of the IDR

> Let W-CRPS be a quantile- or threshold-weighted CRPS.
The IDR Fx satisfies

1 < . 1
- > W-CRPS(Fx,, Yi) = min > W-CRPS(Gy,, Y7)
=1 =1

where Gx runs over all isotone cdf-valued functions.

» The IDR is calibrated "“if the partial order is strong
enough/the training sample is large enough”.
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Using IDR for prediction

» Compute IDR for training dataset.

> For a new covariate value X, find nearest neighbors, choose
suitable ones.

» Interpolate solution amongst nearest neighbors.
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Application: Precipitation forecasts

Dataset

> Precipitation forecasts and observations from 2007 to 2017

Airport Available days (years)
London Heathrow 2256 (6.2)
Brussels 3406 (9.4)
Zurich Kloten 3241 (8.9)
Frankfurt 3617 (9.9)

» Observations: 24-hour accumulated precipitation amounts

» Forecasts: ECMWF ensemble
52 members: high-resolution forecast (HRES), control
forecast (CTRL), 50 perturbed members (PM)

» IDR using (HRES, CTRL, mean of PM)



Results: CRPSS

CRPS skill score (relative to ENS)
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Discussion and outlook

> IDR is a new generic technique to generate calibrated
probabilistic predictions.

IDR can accomodate predictions from multiple models.
IDR is in-sample optimal with respect to all weighted CRPS.
IDR provides guarantees for calibration in-sample.

vV vV v VY

IDR yields competitive predictions for precipitation using less
information.

v

R Package for IDR in preparation
» Paper in preparation, available upon request: Master Thesis of
A. Henzi (2018).
Extensions/related methods:
» Semi-parametric IDR for outcomes with heavy tails.

» Isotonic regression for point predictions/specific parameters of
the predictive distribution.

» Work in progress: Variable selection method for partial orders.
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