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Diagnosing and Understanding Brazilian Subseasonal

Tropical and Extratropical Processes (DUBSTEP)

\_ /
" Aim: Assessing prediction skill for sub-seasonal rainfall h
variability in Brazil, including conditional skill based on large-

. scale atmospheric circulations. )

e S2S prediction skill for Brazilian precipitation

e Conditional forecast skill for Brazilian precipitation; teleconnections
from large-scale climate variability




Motivation
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S2S Data

Model Natlv.e Ye.ars Initialisation frequency Ensemble Reference
Resolution available members
UKMO (GloSea5-GC2) 0.8°x 0.5° | 1993-2015 | 1st 9th 17th 25th of each month 7 MacLachlan et al., (2015)
NCEP (CFSv2) ~100 km 1999-2010 Daily 4 Saha et al., (2014)
ECMWE (IFS) 0.7° 1998-2017 Twice per week 11 Vitart et al., (2004)

K Evaluation of S2S skill for weekly averaged precipitation in all 4 seasons (DJF, MAM, JJA, SON) \
e Lead times of 1-5 weeks
* Weekly averaging increases skill by reducing noise from daily rainfall variability.
= Observations: GPCP (satellite + gauge)
Analysis Horizontal Resolution: 1.5° x 1.5°
Challenge: Comparing models with different initialisation dates and ensemble sizes
e Lagged ensembles for NCEP (last 7 days) and ECMWEF (last 3 forecasts)
= Common time period of analysis: 1999-2010
= Evaluation of effects of the ENSO and MJO on the precipitation over Brazil in S2S for DJF
e Oceanic Nino Index (ONI) is used for ENSO
\ e Wheeler—Hendon real-time multivariate (RMM) index for MJO /




S2S Rainfall Forecast Skill
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Forecast Skill B1AS ACC AMSE

over Brazil (40°S-20°N, 90-20°W) N S |
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Brier Skill Score (BSS)

Below Normal Normal Above Normal
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* Higher forecast skill for above and below normal precipitation categories in week 1 than normal precipitation
category.




DJF Precipitation Anomaly Bias - ENSO
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Forecast Skill

over Brazil (40°S-20°N, 90-20°W)

* Models
underestimate:

e dry anomalies
during EI-Nino
e wet anomalies
during La-Nifha

e RMSE are lowest in
ECMWEF and the
highest in UKMO.

e Skill is lower during
El-Nino than in
Neutral or La-Nina

phases in all models.
g /
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GPCP Precipitation Anomalies (DJF)
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Precipitation Anomaly Bias — Week 1
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KStrongest errors are observed during MJO Phase 1: dry bias over NWSA & SESA and wet bias over eastern \
Brazil (except ECMWEF).

* Phase 8 has a wet bias over central Brazil.

tPhases 4 and 5 show a wet bias over northern SA and somewhat dry bias over the central Brazil. J




Forecast Skill over Brazil (40°S-20°N, 90-20°W)
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* Forecast skill decreases
with lead time in all MJO
phases.

 Forecast skill highest in
Week 1 for the observed
MJO in Phase 1.

e Forecast skill decreases
with lead time, and
models usually have no
skill beyond Week 2.




Conclusions

Models exhibit large precipitation biases

e Errors might be associated with tropical convection, orography and regional SSTs

Models show lowest skill in JJA season

e |Indicating issues in predicting rainfall during the dry season

Models underestimate the strength of the MJO and ENSO teleconnections

e S2S rainfall predictions are better during Neutral ENSO conditions

Precipitation errors are well established within the first week of the forecasts

e Skill declines with lead time and models mostly lose useful skill after Week 2
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Future work includes

e Forecast skill analysis for Brazilian operational model
e Analysing model skill using CHIRPS dataset over different sub-regions
e MJO teleconnections analysed using model MJO indices
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