
Modernizing Scientific 
Software Development

Christopher Harrop & Mark Govett

18th Workshop on High Performance 
Computing in Meteorology, Sept 27, 2018

1



● Overview of current challenges

● Branching without the insanity

● Test driven development

● A case for scientific design patterns

Contents

2



To increase forecast skill we need:

● Improved representation of physical processes

● More accurate numerical methods

● Improved initial conditions

● Higher resolution

Challenges

3



To increase forecast skill we need:

● Improved representation of physical processes

● More accurate numerical methods

● Improved initial conditions

● Higher resolution

Challenges

4

And something 
else...



To advance modeling capabilities we need

Challenges

5

HIGH QUALITY SOFTWARE



Rapidly evolving hardware

● Performance portability 

● Optimal code structures vary
○ IJK vs KIJ vs ?

● Single source not feasible?

● Flexible design vs optimal performance

● Legacy code modification restrictions

Software Challenges

6



● Lack of investment in software development
○ Tools, people, expertise, rigorous processes

● Having tools is not sufficient
○ You also have to know how to use them

● Sloppy code management
○ Multiple mirrors, unclear policies, stifling of collaboration

● Conflation of science with software
○ Inadequate testing of software correctness

● Leveraging previous success
○ Avoiding previous failures

● Cultural inertia

More Fundamental Software Challenges

7

Cultural Resistance
New 
Ideas



● No discernable repository branching methodology

● Free-for-all branching

● No authoritative “stable” development branch

● Unbounded scope/purpose

● Infinite lifespan

● Branches not merged back to main development

● Branches do not keep up with main development

Repository Branching Run Amok

8



Branch Management With Git-Flow

9

develop
(default) Time

master

Permanent branches



Branch Management With Git-Flow

10

develop
(default) Time

master

v 1.0
v 1.1

v 1.2
v 2.0

v 2.1
v 2.2

v 3.0

Permanent branches

Product releases



Branch Management With Git-Flow

11

develop
(default) Time

master

v 1.0
v 1.1

v 1.2
v 2.0

v 2.1
v 2.2

v 3.0

Permanent branches

Latest stable (tested) code

Product releases



Branch Management With Git-Flow

12

develop
(default)

Time

feature/feature_name

Feature branches

Singular purpose



Branch Management With Git-Flow

13

develop
(default)

Time

feature/feature_name

Feature branches

Singular purpose



Branch Management With Git-Flow

14

develop
(default)

Time

feature/feature_name

Feature branches

Singular purpose



Branch Management With Git-Flow

15

develop
(default)

Time

feature/feature_name

Feature branches

Singular purpose



Branch Management With Git-Flow

16

develop
(default)

Time
feature/feature_name

feature/feature_name

Feature branches

Singular purpose



Branch Management With Git-Flow

17

develop
(default)

Time
bugfix/bug_name

bugfix/bug_name

Bugfix branches

Singular purpose



Branch Management With Git-Flow

18

develop
(default) Time

master

release/v1.5

v 1.4
v 1.5

Release 
branches



Branch Management With Git-Flow

19

develop
(default) Time

master

release/v1.5

v 1.4
v 1.5

Bug fixes only!

Development for v1.6

Release 
branches



Branch Management With Git-Flow

20

develop
(default) Time

master

release/v1.5

v 1.4
v 1.5

Bug fixes only!

Development for v1.6

Release 
branches



Branch Management With Git-Flow

21

develop
(default) Time

master

hotfix/bug_name

v 1.4
v 1.5

Bug fixes only!Hotfix 
branches



Test Driven Development

22

011101010101
101011110101
010101000101
110101010101
010101100010

Input 106 LOC

Typical Scenario

Baseline Output



Test Driven Development

23

011101010101
101011110101
010101000101
110101010101
010101100010

Input 106 LOC Baseline Output

011101010101
101011110101
010101000101
110101010101
010101100010

Input 106 LOC Test Output

Code Change(s)
Are these 
forecasts 
equivalent?

Typical Scenario



Test Driven Development

Several problems with reliance on system level tests

● Focus is on testing the “model” instead of the “software”

● Does not provide error localization when failures are detected

● Trillions of operations performed exacerbate comparison of results

● High levels of test coverage are difficult to achieve

● Often masks serious errors

● Undetected bugs are allowed into the “stable” repository branches
24



Test Driven Development

A better way….

● Test the science AND the software
○ Theoretical system, computational system, software implementation

● Test multiple quality factors
○ Performance, reliability, correctness, portability

● Test at all granularities
○ Unit tests, integration tests, system tests

● Write new code → Write new tests
25



Test Driven Development

Rules of engagement
● Automate tests / continuous integration

● Require pull requests for merges

● Require reviews for pull requests

● No pull requests merged unless all tests 
pass

● Pull requests must supply tests for all 
new code

26



Scientific software design challenges

● Poor software design quality throttles scientific progress

● Requirements are often poorly defined up front

● Requirements driven by scientific discovery process

● Evolving requirements make extensibility and reproducibility difficult

● Maintainability needs to be prioritized in design

27



A case for scientific software design patterns

● Reusable code → Reusable designs

● Robust recipes for solutions to common design problems

● Innocculate code against future changes

● Provide lexicon for discussing design properties

28



A case for scientific software design patterns

● Adoption of classic patterns to scientific software

● Identify new patterns specific to scientific problems

● Build a common repository of robust design elements for the community

○ Requires community collaboration

● Anti-patterns → Repository of how NOT to design is also useful

29



A case for scientific software design patterns

30

Time_Integrand

my_time_integrator

Euler

step()

Time_Integrator

step()

Runge_Kutta_4

step()

Has A Abstract 
Interface

Concrete Implementation
The 

Strategy 
Pattern



Conclusions

● Investment in software quality is required for improvements in science

○ process/design/maintainability

● We can learn from commercial software engineering industry

○ Git-Flow branching model

○ Test-driven development

○ Design patterns

● Automation should be maximized to minimize human error 

31


