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To increase forecast skill we need:

● Improved representation of physical processes

● More accurate numerical methods

● Improved initial conditions

● Higher resolution

Challenges
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And something 
else...



To advance modeling capabilities we need

Challenges
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HIGH QUALITY SOFTWARE



Rapidly evolving hardware

● Performance portability 

● Optimal code structures vary
○ IJK vs KIJ vs ?

● Single source not feasible?

● Flexible design vs optimal performance

● Legacy code modification restrictions

Software Challenges
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● Lack of investment in software development
○ Tools, people, expertise, rigorous processes

● Having tools is not sufficient
○ You also have to know how to use them

● Sloppy code management
○ Multiple mirrors, unclear policies, stifling of collaboration

● Conflation of science with software
○ Inadequate testing of software correctness

● Leveraging previous success
○ Avoiding previous failures

● Cultural inertia

More Fundamental Software Challenges
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Cultural Resistance
New 
Ideas



● No discernable repository branching methodology

● Free-for-all branching

● No authoritative “stable” development branch

● Unbounded scope/purpose

● Infinite lifespan

● Branches not merged back to main development

● Branches do not keep up with main development

Repository Branching Run Amok
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Branch Management With Git-Flow
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Branch Management With Git-Flow
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Test Driven Development
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Test Driven Development

Several problems with reliance on system level tests

● Focus is on testing the “model” instead of the “software”

● Does not provide error localization when failures are detected

● Trillions of operations performed exacerbate comparison of results

● High levels of test coverage are difficult to achieve

● Often masks serious errors

● Undetected bugs are allowed into the “stable” repository branches
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Test Driven Development

A better way….

● Test the science AND the software
○ Theoretical system, computational system, software implementation

● Test multiple quality factors
○ Performance, reliability, correctness, portability

● Test at all granularities
○ Unit tests, integration tests, system tests

● Write new code → Write new tests
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Test Driven Development

Rules of engagement
● Automate tests / continuous integration

● Require pull requests for merges

● Require reviews for pull requests

● No pull requests merged unless all tests 
pass

● Pull requests must supply tests for all 
new code
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Scientific software design challenges

● Poor software design quality throttles scientific progress

● Requirements are often poorly defined up front

● Requirements driven by scientific discovery process

● Evolving requirements make extensibility and reproducibility difficult

● Maintainability needs to be prioritized in design
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A case for scientific software design patterns

● Reusable code → Reusable designs

● Robust recipes for solutions to common design problems

● Innocculate code against future changes

● Provide lexicon for discussing design properties
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A case for scientific software design patterns

● Adoption of classic patterns to scientific software

● Identify new patterns specific to scientific problems

● Build a common repository of robust design elements for the community

○ Requires community collaboration

● Anti-patterns → Repository of how NOT to design is also useful
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A case for scientific software design patterns
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Time_Integrand
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Euler

step()

Time_Integrator

step()

Runge_Kutta_4

step()

Has A Abstract 
Interface
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Conclusions

● Investment in software quality is required for improvements in science

○ process/design/maintainability

● We can learn from commercial software engineering industry

○ Git-Flow branching model

○ Test-driven development

○ Design patterns

● Automation should be maximized to minimize human error 
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