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The End of Historic Scaling
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But Mere Multi-Core is NOT good enough!
(need to go to simpler cores)
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Heterogeneous Future (LOCs and TOCs)

. . 0.23mmo
Big cores (very few) Tiny core -~
Lots of them\ 3
3ﬁ o (| A ||
: = System | &
)
pig Emmroller 3 3
: L. - ;. dM puéé 5 5
Shared L3 Cache** '
e R e | *’gu’“’éi Mlm | o =
Memory Controller I/0 s B
Latency Optimized Core (LOC) Throughput Optimized Core (TOC)

Most energy efficient if you don’t have lots

. Most energy efficient if you DO have a lot of
of parallelism

parallelism!
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Trends in the Memory/Storage Subsystem
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How to Program these Systems?

Plan A: Devise a hew programming model
Ideally high level to increase productivity
Including autotuning and adaptivity
Deals efficiently with heterogeneous hardware
Combination of compiler/runtime system

These are important research questions one should (and people
actually do) work on

But will take a long time before usable in real applications



& What Applications Want

 HPC System Architecture and Components

— Efficient use of memory and 1/O hierarchies - Balance Compute, |/O
and Storage Performance

— Efficient interaction between “fat” and “thin” (GPU) cores

e System Software and Management

— Software standards (C++17 and Fortran 2015 in particular, but also
OpenMP 4.5, MPI1 3.1, OpenCL 2.2,...)

* Programming Environment
— (Dynamic) environments for task parallelism.

ETP4HPC SRA-3 Kick-off meeting IBM IOT, Munich, March 20th 2017 Peter Bauer & Erwin Laure 4CoE



Plan B

* Work on improving existing, widely used models
* MPI
* OpenMP
* Recently PGAS has also gained momentum
* Cuda/OpenCL/OpenACC

EPIGRAM
* This was the focus of the FP7 project

(2013-2016)
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EPIGRAM Focus

« EPIGRAM believes in the incremental approach and that the most
promising parallel programming environments can be scaled to exascale:

« MPI and PGAS

— Proven petascale technologies
— MPI still most widely used

« Challenges
— Reduction of memory consumption in communication
— Efficient collective operations
— Reduced need for synchronization
— Interoperability

: EPiGRAM




Exascale Message Passing

1. Dealing with limited and slower memory:

— in-depth analysis of MPI derived datatype mechanism for
saving copy-operations;

— Space efficient representation of derived datatypes

— analysis of MPI collective interface specification with
suggestions for improvement

2. Collective communication at scale:

— proposal for specification of homogeneous stencils, towards
improved (homogeneous, regular) sparse (isomorphic) collectives

3. New models:

— Streaming in MP]
— MPI interoperability with other models (OpenMP, PGAS)

11
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MPIStream tor Irregular 1/O

« Conventional MPI I/O approach
calls reduction operations to find
each process's position in the
shared file, then call MP]
collective I/O -> buffering is not
feasible due to large number of
particles

attached Parallel IO
operation
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File System

« Streaming I/O enables data
producers to stream out data
during computation and only data
consumers carry out I/O

operations .
Ivy Bo Peng et al. EPIGRAM
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MPIStream tfor Irregular I/O in HPC Application
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Tests carried out on Beskow supercomputer, a Cray XC40 system based on Intel
Haswell processors and Cray Aries interconnect network with Dragon Topology, Cray C

compiler version 5.2.40 and the Cray MPICH2 library version 7.0.4)).

Ivy Bo Peng et al. EPIGRAM




Exascale PGAS

Increase scalability of collective operations and synchronization in

GPI

Support fault-tolerance
in GP]

Improve exploitation of
diverse and hierarchical
memory spaces in PGAS

Isolation of libraries and
user managed memory

Interoperability
— MPI+GPI-2; migration path
GASPI| Forum
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GPIl in IFS: Results

* Due to the size and complexity of
the complete code, porting efforts
have been done incrementally.
Currently three main routines have
a GPI-2 implementation:

— inverse Legendre transform (LTINV)
— direct Legendre transform (LTDIR)

— semi-Langragian (SL) scheme.

« Existing coarray implementation
from the CRESTA project was
starting point.
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EPIGRAMEZE!

EPiGRAM-HS is motivated by the increasing presence of
heterogeneous technologies on pre-exascale
supercomputers and by the need of porting key HPC and
emerging applications to these systems on time for exascale
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Exascale is at Door: will Applications use the ExaFLOPS?

* The race to an ExaFLOPS-capable supercomputer will likely end up in
2020 - 2021

* That leaves us only 2-3 years for software development and application porting!

Most of large-scale HPC applications either don’t use heterogeneous
systems or have limited support in experimental branches

* Major effort needed for running production-quality simulations from day one of
the exascale era

18



Four Main Project Teams

Network

Heterogenous
Memory

Heterogenous
Compute

Applications
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EPIGRAM-HS Applications

* Traditional HPC Applications
* IFS — Weather Forecast — ECMWF
* Nek5000 - CFD — KTH PDC
* iPIC3D — Space Physics — KTH PDC

* Emerging Al Applications
* Lung Cancer Detection — Caffe / TensorFlow — Fraunhofer

 Malware Detection — Caffe / TensorFlow — Fraunhofer

20



EPiIGRAM-HS is developing a programming environment,
enabling HPC and emerging applications to run on large-
scale heterogeneous systems at maximum performance

21




Extending MPI and GASPI Programmability

MPI Windows and GASPI
segments for diverse memories MPI Notified One-Sided for GPUs

: - EPiGRAM - : Accelerators and

Diverse Memory MPI and GASPI Reconfigurable HW

S
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Programmability



Automation for Productivity: MPI “Planned” Collectives

Productivity

MPI Collective Operations with FFTW-like
plans for supercomputers with accelerators

Auto-Tuned Collective Communication

) : EPiGRAM : Accelerators and
Diverse Memory = MPI and GASPI = Reconfigurable HW
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Automation for Productivity: Runtimes for Data Plac. and FPGAs

Runtime for data placement on GPI-space for FPGA code
heterogeneous systems generation

Automatic Data Placement Automatic Code Generation

Productivity

) : EPiGRAM : Accelerators and
Diverse Memory = MPI and GASPI = Reconfigurable HW




Automation for Productivity: DSL for DL on Distributed Het. Systems

Productivity

High-level DSL targeting supercomputers with
heterogeneous technologies (GPU, FPGA)

DSL for Deep Learning Applications

Automatic Data Placement

Automatic Code Generation

. EPiGRAM
Diverse Memory <:j MPI and GASPI

Accelerators and

o Reconfigurable HW
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Standardization

* MPI Forum
* GASPI Forum (EPiIGRAM was founding member)
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Project Fact Sheet

EPiGRAM-HS = Exascale ProGRAmMmming Models for Heterogenous Systems
* Continuation of a first EC-funded EPiIGRAM project 2013-2016
EC Call: H2020-FETHPC-2017

* Sub-topic: a) High productivity programming environments for exascale

Total Budget: 3,998,741 €

* Six Partners with KTH as coordinating team

Started on September 15t 2018 with a duration of three years
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Conclusion

* EPIGRAM-HS is motivated by the increase of heterogenous compute and memory
systems on pre-exascale supercomputers and porting applications to these systems on
time for exascale

* EPIGRAM-HS is a three-year EC-funded project to develop programming models for
these systems

* EPIGRAM-HS is developing a programming environment, based on MPI and GASPI, for
enabling applications to run on large-scale heterogeneous systems at maximum
performance
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Contact: Stefano Markidis, markidis@pdc.kth.se
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