Ocean Data Assimilation for Numerical Weather Prediction

Philip Browne¹, Hao Zuo, Patricia de Rosnay, Eric Boisseson, Marcin Chrust, Kristian Mogensen, Magdalena Balmaseda

¹ ECMWF Earth System Assimilation Section, Coupled Assimilation Team

13 Sept 2018

Outline

The importance of the ocean analysis on NWP

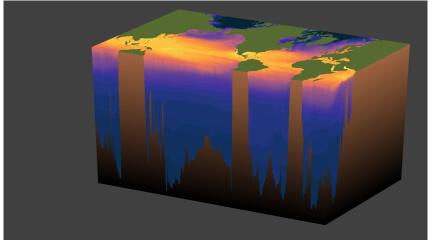
The current observing system used at ECMWF

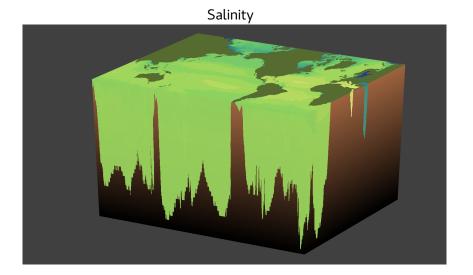
The OCEAN5 analysis at ECMWF

The future observations for the ocean

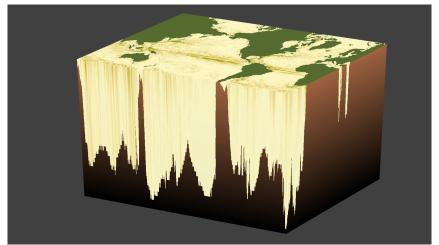
Coupled ocean-atmosphere assimilation

Outlook for future ocean analyses



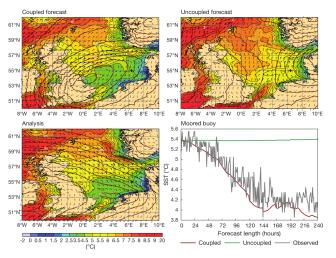

The ECMWF Earth System

Components of ECMWF's IFS Earth System. Along with the atmosphere, there are the ocean, wave, sea ice, land surface, snow, and lake models.



Currents

Sea ice


Allowing use of the coupled model

Normalised RMSE of temperature forecast errors comparing coupled forecasts to uncoupled forecasts

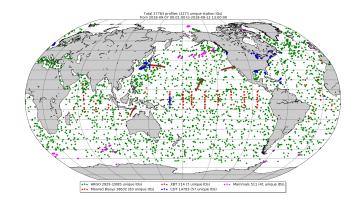
Benefits of coupled ocean-atmosphere forecasts

[Mogensen et al. 2018]

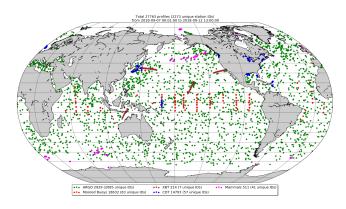
Outline

The importance of the ocean analysis on NWF

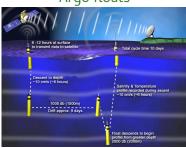
The current observing system used at ECMWF

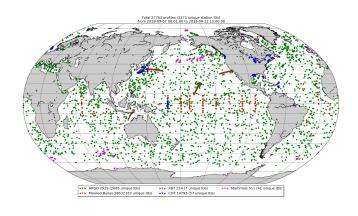

The OCEAN5 analysis at ECMWF

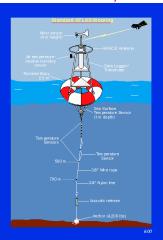
The future observations for the ocean

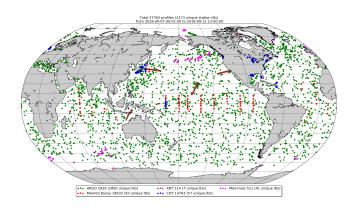

Coupled ocean-atmosphere assimilation

Outlook for future ocean analyses



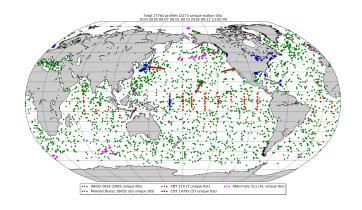



Argo floats


Argo operational cycle. [Argo 2018]

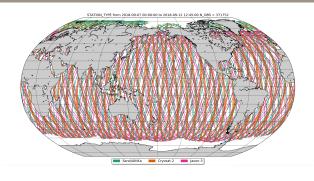
Moored buoys

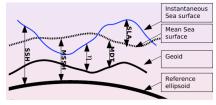
[PMEL 2018]



Ship based observations

[CSIRO 2001]



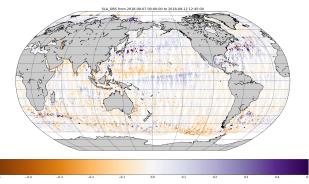

Mammals!

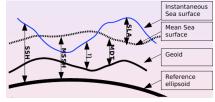
[MEOP et al. 2015]

Sea level anomaly observations

Altimeter measures SSH. Model represents η . The Geoid changes with time.

We convert to assimilating anomalies:


y = SSH anomalies = SSH - MSSH


H(x) = η anomalies = η - MDT

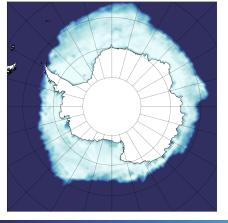
MDT, or Mean Dynamic Topography, is the mean sea surface height above geoid and comes from an external dataset.

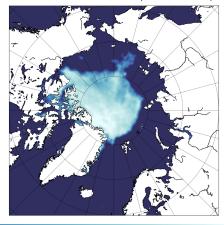
Sea level anomaly observations

Altimeter measures SSH. Model represents η . The Geoid changes with time.

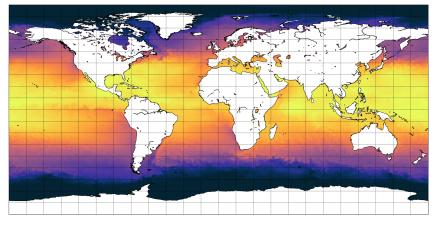
We convert to assimilating anomalies:

$$y = SSH$$
 anomalies = $SSH - MSSH$


$$H(x)$$
 = η anomalies = η - MDT


MDT, or Mean Dynamic Topography, is the mean sea surface height above geoid and comes from an external dataset.

Sea ice concentration observations


Latest L4 sea ice concentration observations from OSTIA (20180912)

Sea-surface temperature

Latest L4 sea-surface temperature observations from OSTIA (20180912)

Outline

The importance of the ocean analysis on NWF

The current observing system used at ECMWF

The OCEAN5 analysis at ECMWF

The future observations for the ocean

Coupled ocean-atmosphere assimilation

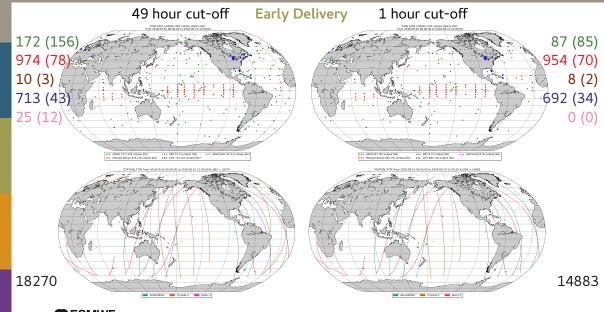
Outlook for future ocean analyses

The OCEAN5 model

The ocean model

- ▶ NEMO model v3.4.1
- ORCA_025 resolution: 0.25° horizontal resolution. 75 vertical levels
- Tripolar grid poles in Canada, Russia and Antarctica
- High vertical resolution in the uppermost ocean
- Turbulent Kinetic Energy mixing

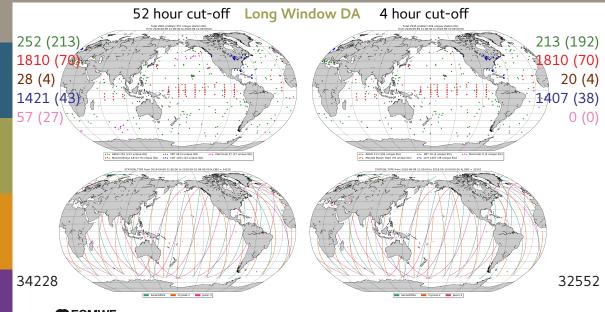
The sea ice model


- ► IIM2
- Viscous-plastic rheology

The OCEAN5 assimilation configuration

- The assimilation system is NEMOVAR
- Methodology is 3D-Var-FGAT
- Assimilation of in situ profiles, SLA, SIC
- Relaxation of SST towards OSTIA
- OCEAN5 is a reanalysis-analysis system with 2 streams behind real-time and real-time
- Assimilation window varies from 8 days to 12 days and split into two chunks
- Minimisations performed separately for sea ice and ocean components
- Atmospheric forcing comes from the HRES system
 - Weakly coupled ocean-atmosphere assimilation
- 5 member EDA with perturbed observations and observation locations

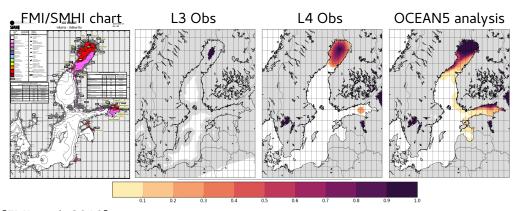
https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis


Ocean observation latency

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Ocean DA for NWP

Ocean observation latency



Ocean analysis suite

Sea ice in the Baltic Sea

[FMI et al. 2018]

Outline

The importance of the ocean analysis on NWP

The current observing system used at ECMWF

The OCEAN5 analysis at ECMWF

The future observations for the ocean

Coupled ocean-atmosphere assimilation

Outlook for future ocean analyses

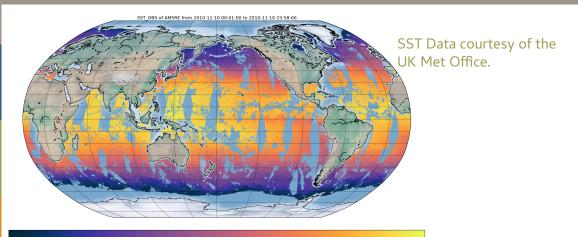
Future observing systems

Landsat 8 - OLI (Operational Land Imager) image on 18 July 2018. [Carlowicz 2018]

Can we use images like this of blooms of phytoplankton to track eddies?

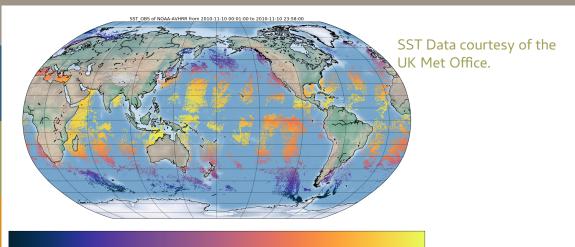
Do we need higher resolution to do so?

Use of GloFAS river runoff data


Use of GloFAS river runoff data

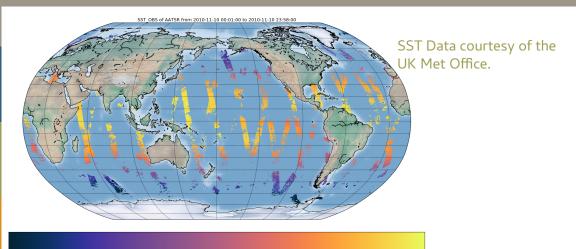
Instead of river runoff climatology, can we use NRT river runoff estimates from GloFAS?

Image courtesy E. Zsoter (GloFAS team). http://www.globalfloods.eu/


SST assimilation

Challenges include observation screening, bias correction, and modification of the background error covariance model to properly propagate the information to the subsurface layers of the ocean.

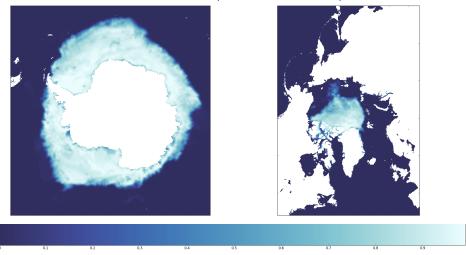
ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS


SST assimilation

Challenges include observation screening, bias correction, and modification of the background error covariance model to properly propagate the information to the subsurface layers of the ocean.

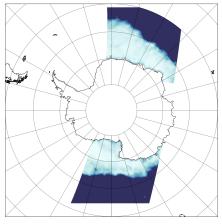
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

SST assimilation



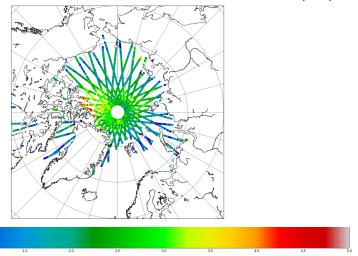
Challenges include observation screening, bias correction, and modification of the background error covariance model to properly propagate the information to the subsurface layers of the ocean.

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

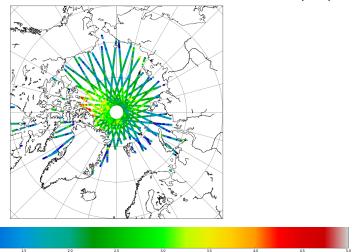

Sea ice concentration assimilation

L3 Sea Ice Concentration observations (OSI SAF OSI-401b) on 20180912

Sea ice concentration assimilation


L2P Sea Ice Concentration observations (OSI SAF OSI-205) on 20180902 from 20:22 to 20:49 by AVHRR on Metop-A

Sea ice thickness


L2 Sea Ice Thickness observations (m) from 20180429 to 20180430 by Cryosat

Sea ice thickness

L2 Sea Ice Thickness observations (m) from 20180429 to 20180430 by Cryosat

These observations are not available when melt ponds are present.

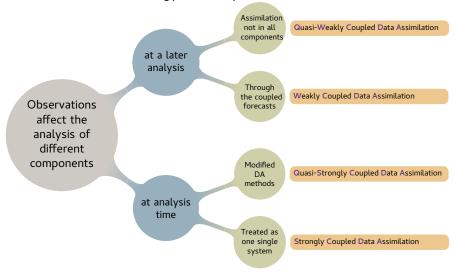
Outline

The importance of the ocean analysis on NWF

The current observing system used at ECMWF

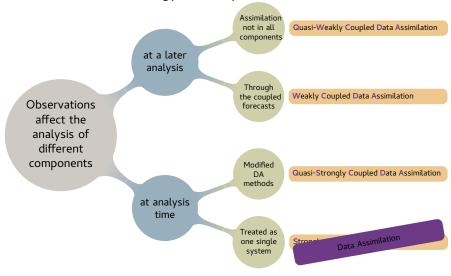
The OCEAN5 analysis at ECMWF

The future observations for the ocean


Coupled ocean-atmosphere assimilation

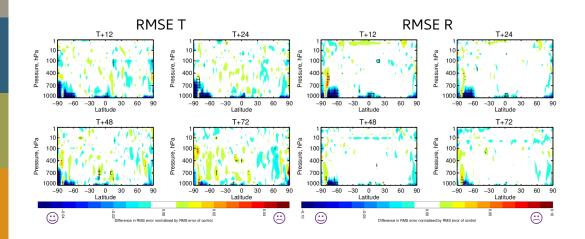
Outlook for future ocean analyses

Coupled DA nomenclature

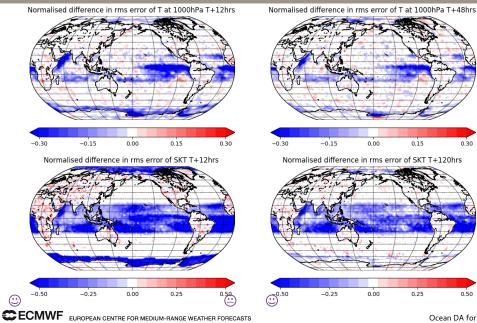

We follow the terminology of Penny et al. 2017:


Coupled DA nomenclature

We follow the terminology of Penny et al. 2017:



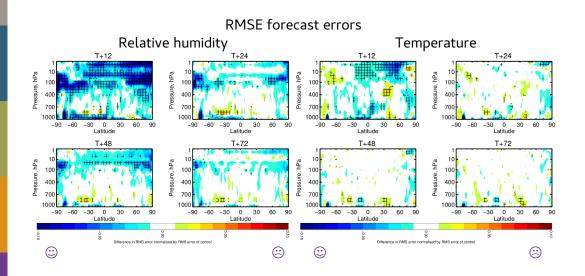
Weakly coupled ocean-atmosphere assimilation


- Operational WCDA through sea ice concentration
- Future upgrade WCDA through sea-surface temperature ±20° to 25°

Weakly coupled assimilation results

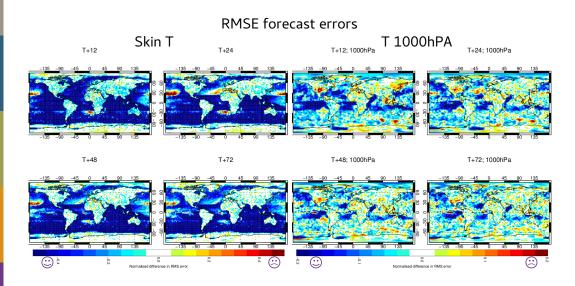
WCDA maps of surface temperatures

Ocean DA for NWP


0.50

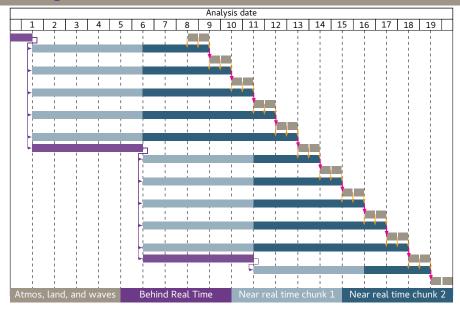
Potential of QSCDA - outer loop coupling ocean-atmosphere DA

Coupled assimilation


Uncoupled analysis (OSTIA)

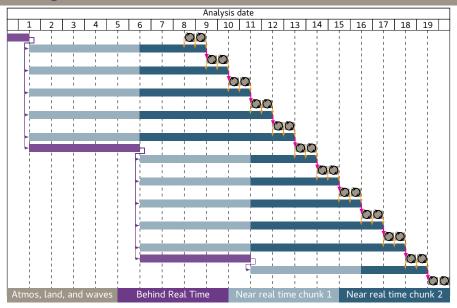
QSCDA - outer loop coupling ocean-atmosphere DA

QSCDA - outer loop coupling ocean-atmosphere DA

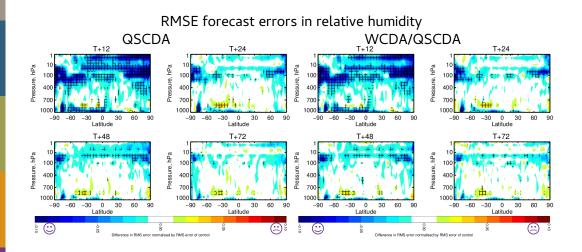

Reconciling timescales in the ocean and atmosphere

- NWP forecasts have to be produced in a timely fashion
- □ Not all ocean observations are available for current atmospheric cut-off times
- Would like coupled assimilation for:
 - Coupled observation operators
 - ☐ Atmospheric bias correction of ocean sensitive satellite observations
 - ☐ More balanced initial conditions

Combining WCDA and QSCDA for NWP


- Do both WCDA and QSCDA!
- ▶ For QSCDA, use the initial conditions from the latest available WCDA analysis

Combining WCDA and QSCDA for NWP



Combining WCDA and QSCDA for NWP

QSCDA compared to Composite WCDA/QSCDA

Reconciling timescales in the ocean and atmosphere

- √ NWP forecasts have to be produced in a timely fashion
- ✓ Not all ocean observations are available for current atmospheric cut-off times
- Would like coupled assimilation for:
 - © Coupled observation operators
 - © Atmospheric bias correction of ocean sensitive satellite observations
 - More balanced initial conditions
- Works with observations available in NRT
- Improves forecasts

Outline

The importance of the ocean analysis on NWF

The current observing system used at ECMWF

The OCEAN5 analysis at ECMWF

The future observations for the ocean

Coupled ocean-atmosphere assimilation

Outlook for future ocean analyses

Future developments in the ocean analysis

- Move away from L4 observations to progressively lower level observations
- More coupling to the atmosphere driving the atmospheric analysis with more ocean analysis fields
- \blacktriangleright Use of ensemble information in the B matrix moving towards Hybrid-3D-Var.
- Outer loop coupling with the atmosphere lots of potential to help with bias correction and screening of ocean sensitive satellite observations
 - Aligning the ocean analysis window to the current atmospheric window would mean missing lots of vital in situ observations
 - Care needs to be taken not to inherit ocean model biases into the atmospheric analysis

References

- Argo (2018). How Argo floats work. URL: http://www.argo.ucsd.edu/How{_}Argo{_}floats.html (visited
- Carlowicz, Mike (2018). Summer Blooms in the Baltic and Barents. URL: https://earthobservatory.nasa.gov/images/92462/summer-blooms-in-the-baltic-and-barents
- CSIRO (2001). Using the CTD Collector in Antarctica. URL: http://www.scienceimage.csiro.au/image/2319. FMI et al. (2018). Baltic sea ice chart. URL: http://cdn.fmi.fi/marine-observations/products/icecharts/20180217-full-color-ice-chart.pdf (visited on 07/10/2018).
- MEOP et al. (2015). Marine Mammals Exploring the Oceans Pole to Pole. URL: http://www.meop.net/meop-portal/pictures/iain-field/img{_}9691.html (visited on 08/14/2018).
- Mogensen, Kristian S. et al. (2018). "Effects of ocean coupling on weather forecasts". In: ECMWF Newsletter No. 156, pp. 6-7.
- Penny, Stephen G et al. (2017). Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges and Recommendations. Tech. rep. World Meteorological Organisation.
- PMEL, NOAA (2018). Moorings | Global Tropical Moored Buoy Array. URL: https://www.pmel.noaa.gov/gtmba/moorings (visited on 08/14/2018).
- Zuo, H et al. (2018). OCEAN5: the ECMWF Ocean Reanalysis System and its Real-Time analysis component.

