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Atmosphere
Monitoring

Environmental and health concern - up to 7 million premature deaths
per year (WHO) because of air pollution

Important to provide air quality forecasts

Not principally different from meteorological DA but several new
challenges

Interaction of atmospheric composition (AC) and NWP

Feedback on dynamics via radiation scheme (ozone, aerosols)
Precipitation and clouds (aerosols)

Satellite observations influenced by aerosols and trace gases
Hydrocarbon (Methane) oxidation is water vapour source
Assimilation of AC data can have impact on wind field
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Atmospheric CO, at Mauna Loa Observatory
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Atmosphere
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Over the last decade IFS has been extended with modules for
atmospheric composition (aerosols, reactive gases, greenhouse
gases)

GEMS -> MACC -> CAMS (Copernicus Atmosphere Monitoring Service)
projects

At first a “Coupled System”, now composition fully integrated into IFS

Data assimilation of AC data to provide best possible IC for
subsequent forecasts

AC benefits from online integration and high temporal availability of
meteorological fields

CAMS provides daily analyses and 5-day forecasts of atmospheric
composition in NRT

CSECMWF (opernicus |
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CAMS NRT data assimilation

Extra
information:
Emissions
(e.g. GFAS)
Fluxes

Observations
Observation
operators
Bias correction
Background
error statistics

Chemistry solvers included in IFS
e.g. TM5 (CBO05)

54 species, 126 reactions
photolysis, dry and wet deposition
(no TL + AD of chemistry)

IFS control variables
CHEM: 03, NO2, SO2, CO, HCHO
AER: single or dual control variables
(total or fine & coarse mode aerosol
mixing ratio)
GHG: CO2, CH4

Meteorological variables
Aerosol model with 12 bins (no TL or AD)
GHG fields

system
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2. Challenges for atmospheric composition
data assimilation
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Quality of NWP depends predominantly on initial state
AC modelling depends on initial state (lifetime) and surface fluxes

Large parts of chemical system not sensitive to initial conditions because
of chemical equilibrium, but dependent on model parameters (e.g.
emissions, deposition, reaction rates,...)

Data assimilation is challenging for short lived species (e.g. NO2)
CTMs have larger biases than NWP models

Most processes take place in boundary layer, which is not well observed
from space

Only a few species (out of 100+) can be observed

Concentrations vary over several orders of magnitude

Data availability

More complex and expensive, e.g. atmospheric chemistry, aerosol physics

CSECMWF (opernicus |

Commission



3

“Atmosphere
Monitoring

(@

X Obs O
A Jo
analysis
o \
Obs Corrected
J forecast
X b (0] \
Obs
f o
X Jo revious
a forecast
Obs
j ] 1 >
3 UTC 6 UTC 9 UTC 12 UTC 15 UTC Time
=<IE y

Assimilation window
NWP 4D-Var is mostly defined as an initial value problem. Only the
initial conditions are changed and model error is relatively small.
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Boundary
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For atmospheric composition, the boundary conditions are very
important (surface fluxes, emissions,...).
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Emissions are one of the major uncertainties in modelling (can not be
measured directly)

The compilation of emissions inventories is a labour-intensive task based
on a wide variety of socio-economic and land use data

Some emissions can be “modelled” based on wind (sea salt aerosol) or
temperature (biogenic emissions)

Some emissions can be observed indirectly from satellites instruments
(Fire radiative power, burnt area, volcanic plumes)

,lnverse“ methods can be used to correct emission estimates using
observations and models — in particular for long lived gases such as CO2
(e.g. Chevallier et al. 2014) and Methane (Bergamaschi et al. 2009)

Emissions can be included in the control vector and adjusted together
with concentrations (e.g. Hanea et al. 2004; Elbern et al. 2007; Miyazaki
et al. 2012)
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e e Combustion related (CO, NOx, SO2, VOC, CO2)

— fossil fuel combustion
— biofuel combustion
— vegetation fires (man-made and wild fires)

* Fluxes from biogeochemical processes (VOC, CH4, CO2, Pollen):
— biogenic emissions (plants, soils, oceans)
— agricultural emissions (incl. fertilisation)

* Fluxes from wind blown dust and sea salt (from spray)

* Volcanic emissions (ash, SO2, HBr ...)

* In CAMS we use GFAS fire emissions (Kaiser et al. 2012), MACCity
anthropogenic emissions (Granier et al. 2011) and Megan biogenic
emissions (Guenther et al. 2006)

* Biomass burning accounts for ~ 30% of total CO and NOx emissions, ~10%
CH4
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(Rl Emission Examples

TNO European anthropogenic Nox emissions CAMS GFAS Daily Fire Products Sunday 15 Getober 2017

AtmOSp h enhe Average of Observed Fire Radiative Power Areal Density [mW/m2] _ max value = 13.71 Wim2

Monitoring NOx in 2009

-
- "

GFAS 15 October 2017

CAMS GFAS Daily Fire Products Sunday 15 October 2017
Average of Observed Fire Radiative Power Areal Density [mWimz] _ max value = 13.71 Wim2
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Mean CO2 Fluxes [ gC/m2/day] mean = 0.039
:N : g - 3 = - B — ; ’:_‘r_ i ™ ;n

>

[ 20~ ECMWF Cpem]cus " European

Europe’s eyes on Earth Commission



Importance of emissions (Russian fires 2010)
Huijnen et al. 2012 (ACP)
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Importance of fire emissions on

tropospheric NO?2

Tropospheric NO, above North-Africa
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Impact of anthropogenlc emissions:

CO (ppbv) FC-OBS bias. Model versus GAW.
Meaned over 14 sites in Europe. Jan - Dec 2008. FC start hrs=00Z. T+0 to 21.
——g0al ——gbao  rean

Integrated chemistry:
HTAP emissions
MACCity emissions
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. ~ 4l | (GFAS used in all runs)
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Choice of emissions data set has large impact

on surface concentrations .
J. Flemming
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Chemical

Temporal Scale

Lifetime vs.

Spatial Scale

Urban or Regional or Synoptic to

Microscale I local scale I mesoscale I global scalel

100yr |-

10yr [~

—_
=
=
|

—_
3
@]
3
|

-
jaR
|

1h -

1min |~

im

Inter-hemispheric
i mixing time

Intra-hemispheric
mixing time

Boundary layer
mixing time

<

No transport
Species modelled

Short-lived <

10m 100m 1km 10km 100km1000km 10000km
Spatial Scale
After Seinfeld and Pandis [1998]

L ECMWF (op

ernicus

Euwope’s eyes on Earth

European
Commission



~

@

L - o
T T T

Colonne verticale [1e+15 molec/cm?]

ba971015

138 12010690 76 60 45 30 1!36 30 45 60 76 90105120 136
B Iy e H

- NO2
wani NO
wes N205
== 1/2 HNO3
uer CIONO2

— AutresNOy | ||

| 12;‘hour 4D-Var wi” dow|

yo!
‘ﬂ
ol

.‘,.-n- Ill'll...... ?
n“.

- RO l
@ leposition @ @
CECMWF (opermicus 'EE &z,

Credits: J-C Lambert (BIRA)

Satellite observations of NO, are not
straightforward to assimilate.

Fast chemistry makes it difficult to treat it
as an initial value problem without a
proper chemistry adjoint, because of the
strong diurnal cycle.
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Atmosphere OMI NO2 analysis increment [%)]

Differences between

Monitoring a) Anal
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* Large positive increments from OMI NO2 assim

* Large differences between analyses of ASSIM and CTRL

* Impactis lost during subsequent 12h forecast

* It would be more beneficial to adjust emissions (instead of IC)
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CO emissions free-run
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Atmosphere Ensemble mean of emissions

First tests with 25 members EDA (T159)
with perturbed emissions
LinCO scheme (Cariolle and Massart, 2014)
MOPITT and IASI TCCO assimilated
May-June 2017
Linear regression between the increments
and emissions at each outer loop for each
ensemble member

mmm) Emission increment

Looks promising
Validation with independent data to follow

Credits: J. Barré
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3. Observations of atmospheric composition
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Atmospheric composition observations traditionally come from UV/VIS measurements. This
limits the coverage to day-time only. Infrared/microwave are now adding more and more to
this spectrum of observations (MOPITT, AIRS, IASI, MLS, MIPAS ...) [
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AC Satellite retrievals

Little or no vertical information from satellite observations. Total or
partial columns retrieved from radiation measurements. Weak or no
signal from boundary layer.

Fixed overpass times and daylight conditions only (UV-VIS) -> no daily
maximum/cycle

Global coverage in a few days (LEO); often limited to cloud free
conditions; fixed overpass time.

Retrieval errors can be large; small scales not resolved
Averaging kernels important

AC in-situ observations

Sparse (in particular profiles)

Limited or unknown spatial representativeness
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NRT system
Tropospheric NO2

I s v T

T ==t
R " _ omi

- Atmosphere
Monitoring

A A L. AURA 7

[Tk
|

T e : B
o 4 TR ML i A
SR TR gy Nl

e e - P PO s S I I

4 2% 33

= ""'Ti“w“rn omi
OMI, MLS Eaa - AURA

AURA AN :
S TR
.
. AN [
] i (R Y
*’\__4/

S 0 _epemicus [ o

Eusope’s eyes on Earth Commission

5333

IE]
wn
@]
N

assimilated

monitored



hel®

X ( New data: Tropomi (S5P) data coverage
'Atmosphere TROPOMII (ESA, full resolution) OMI (DOMINO-V2) 27 June 2018

Monitoring

* GOME-2and
OMI thinned to
0.5° x 0.5° and
cloud cleared

*  TROPOMI cloud
cleared

GOME-2B (GDP v4.8
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27 June 2018

* GOME-2and
OMI thinned to
0.5° x 0.5° and
cloud cleared

*  TROPOMI cloud
cleared
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Increment from a single TCO3 observation

Ozone background errors

Increment created by a single O3 obs
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* Maximum impact around L20 (~35 hPa)
» Profile data are important to obtain a good vertical analysis profiles
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4. Aerosol data assimilation
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4D-Var assimilation system for aerosols

Aerosol assimilation is difficult because:

There are numerous unknowns (depending on the aerosol model)
and very little observations to constrain them

The concentrations vary hugely with for instance strong plumes of
desert dust in areas with very little background aerosol, which makes
it difficult to estimate the background error covariance matrix




Atmosphere

vonioring 12 aerosol-related prognostic variables:
— 3 bins of sea-salt (0.03-0.5-0.9-20 pm)
— 3 bins of dust (0.03 -0.55-0.9 - 20 um)
— Black carbon (hydrophilic and —phobic)
— Organic carbon (hydrophilic and —phobic)
— S02 ->S04

* Physical processes include:
— emission sources (some of which updated in NRT, i.e.fires),
— horizontal and vertical advection by dynamics
— vertical advection by vertical diffusion and convection

— aerosol specific parameterizations for dry deposition, sedimentation, wet
deposition by large-scale and convective precipitation, and

— hygroscopicity (SS, OM, BC, SU)

Morcrette et al. 2009, JGR, 114, doi:10.1029/2008JD011235 & ECMWF (opernicus | oo
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Assimilated observations are the 550nm MODIS (Aqua and Terra)

Aerosol Optical Depths (AODs) over land and ocean and PMAp (Metop-A
& -B) AOD over ocean

Control variable is formulated in terms of the total aerosol mixing ratio

Analysis increments are repartitioned into the species according to their
fractional contribution to the total aerosol mixing ratio

Background error statistics were computed using forecast errors with the
NMC method (48h-24h forecast differences).

Observation errors are prescribed fixed values for MODIS/ given for
PMAp

Variational bias correction is applied to AOD
Individual aerosol components are not well constrained

CSECMWF (opernicus |
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( Aerosol Speciation from three reanalyes
Atmosphere Total AOD Sea Salt Dessert Dust

Monitoring
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Even though total AOD in CIRA and CAMS is close there J. Flemming
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( Example for wrong aerosol attribution

Atmosphere

Monitorin . .
b Eruption of the Nabro volcano in

June 2011 put a lot of fine ash into
the stratosphere.

This was observed by AERONET
stations and the MODIS
instrument.

ICIPE-Mbita - AERONET

The MACC aerosol model did not contain
stratospheric aerosol at this time, so the

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Jun .
MACC AOD analysis obs.erved AOD was wrongly attributed to the
® AERONET total AOD available aerosol types.
AERONET fine mode AOD
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Atmospheric composition (AC) and weather interact

IFS includes fields of atmospheric composition: Reactive gases, greenhouse gases,
aerosols

Modelling of AC expensive - includes many species with concentrations varying over
several orders of magnitude

AC forecasts benefit from realistic initial conditions (data assimilation) but likewise from
improved emissions and models
Extra challenges for DA of atmospheric composition compared to NWP
— Additional information needed (emissions, deposition, reaction rates ...)
— Short lived species tricky
— Species not constrained by assimilated observations (e.g. aerosols)
— Resolution of observations often not adequate (vertical, horizontal, temporal)
Potential benefits for NWP

CAMS air quality forecasts and analyses are freely available from
atmosphere.copernicus.eu

New CAMS reanalysis of atmospheric composition (2003-2016) will be released next
week
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