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What are observation errors?

In data assimilation, we consider
the observation equation

y = H(x) + ε.

We assume ε is unbiased,
E(ε) = 0, and has covariance R
such that

Rij = E(εiεj).
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Where do observation errors come from?
The error vector, ε, contains errors from four main sources: Janjić
et al (2017)

Instrument noise Observation pre-processing

Observation operator error Scale mis-match
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Problems dealing with observation error
correlations

• Magnitude and character of observation error correlations
largely unknown - can only be estimated in a statistical sense,
not observed directly

• Observations thinned spatially to reduce the correlations, and
the R matrix treated as diagonal.
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Why do we want to estimate observation
uncertainty?

• Currently only use 5% of some obs types due to thinning
• High resolution forecasting
• Improve analysis accuracy and forecast skill (e.g., Stewart et al.

2013; Weston et al., 2014)
• Changes to scales of observation information content in

analysis depending on both the prior and observation error
correlations (Fowler et al, 2018)
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Estimating observation uncertainty

• Observation uncertainty depends on YOUR observation
operator, model resolution etc and is state dependent (Waller et
al., 2014)

• Approximations are still useful and can give improved forecast
skill (Stewart et al, 2013)

• Approaches:
◦ Error inventory/Metrological approach
◦ Diagnosis from assimilation statistics (here)

8 of 26



Outline

What are observation errors?

Why estimate observation uncertainty?

How can we estimate observation uncertainty?

How can we implement correlated observation statistics?

Conclusions

References

9 of 26



DBCP diagnostic, Desroziers et al., (2005)
Use the background innovations and analysis residuals:

do
b = y−H(xb),

do
a = y−H(xa).

Taking the statistical expectation, and after some calculations...

E [do
ado

b
T
] = R̃(HB̃HT + R̃)

−1
(HBHT + R) = Re,

where
• Re is the estimated observation error covariance matrix
• B and R are the exact background and observation covariance

matrices.
• R̃ and B̃ are the assumed statistics used in the assimilation.
If R̃ = R and B̃ = B, then

E [do
ado

b
T
] = R.
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How well does the diagnostic work in practice?

• Gives plausible results e.g. Stewart et al., 2009, 2014. UK Met Office

global 4D-Var, 139 channels of IASI data (clear sky, sea surface observations only), 2073 observations,17 July 2008.

◦ Non-symmetric structure

◦ Index 86-108 are surface
channels; 109-121, 122-127,
128-138 are sensitive to water
vapour

• Including interchannel correlations has improved the NWP skill
score (e.g., Weston et al 2014).

• BUT results are sensitive to the stats used in the assimilation
(Waller et al, 2016a).11 of 26



Doppler radar winds and Met Office UKV
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Horizontal Correlations, sensitivity to B̃
Waller et al. (2016b)

• Increasing variance and lengthscale in B̃ reduces variance and
lengthscale in diagnosed Re.

• Consistent with Waller et al (2016a) theory.13 of 26
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Using diagnosed covariances

Diagnosed interchannel observation error correlations for
IASI (for the Met Office global model)

Problems: Diagnosed
covariances typically
• Not symmetric
• Not positive definite
• Variances too small
• Ill-conditioned

Can prevent convergence of variational minimization (Weston et
al. 2014)
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Convergence of minimization

The sensitivity and accuracy of the solution of the minimization
depend on the condition number of the Hessian

κ(S) =
λmax(S)
λmin(S)

,

where λ denotes the eigenvalue and the Hessian is

S = B−1 + HT R−1H.

Tabeart et al. (2018) showed that κ(S) increases with λmin(R).
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Reconditioning R

To improve the conditioning of R (and S ) we alter the
eigenstructure of R so as to obtain a specified condition number
for the modified covariance matrix by e.g.,

• Ridge regression - add constant to all diagonal elements.
• Eigenvalue modification: increase the smallest eigenvalues of

R to a threshold value that ensures the desired condition
number, keeping the rest unchanged.
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Reconditioning results with IASI inter-channel
error matrix (Tabeart et al, submitted)

• Ridge regression method increases standard deviations more
than minimum eigenvalue method

• Ridge regression method decreases correlations, but minimum
eigenvalue method has non-uniform behaviour
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Experiments with Ridge Regression in 1D-Var -
Tabeart et al.

• Reconditioning increases convergence speed
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Spatial correlations

We need to be able to compute
the matrix-vector product

R−1v.

This might require expensive
communication between
processors.
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Expt: Doppler radar wind assimilation (Simonin et al, submitted)

• Assume only horizontal correlations within a family
• R is derived on-the-fly (different observations each assimilation)
• Correlation matrix is determined by calculating the distance

between each pair of observations in the family

Cij = exp

(
−Dij

Lr

)
• Lengthscale determined by fitting to diagnosed horizontal

correlations
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Experiments

Three experiments run for 20 days (3 hourly cycling 3D-Var, UKV
1.5km model)

Control: 6km thinning with diagonal R (∼ 2000 radar obs per
cycle)

Corr-R-6km: 6km thinning with correlated R (∼ 2000 radar obs
per cycle)

Corr-R-3km: 6km thinning with correlated R (∼ 8000 radar obs
per cycle)
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Results

• No significant difference in iteration count or wall-clock time
• Corr-R-3km increments are smaller scale and smaller

magnitude
• Parameters for experiments have not been tuned, but most

O-Bs show a small benefit from the introduction of correlations.
σO−B,exp

σO−B,ctrl
− 1[%]
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O-B Forecast skill cont

Work underway to implement in 4D-Var.
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Conclusions

• It is important to be able to account for observation error
correlations
◦ Avoid thinning (high resolution forecasting)
◦ Improved forecast skill score

• First we need to estimate correlations
◦ Desroziers et al (2005) diagnostic can be used with caution
◦ Can understand sensitivity to the assumed stats in the assimilation

(Waller et al. 2016a)
◦ Can help us to understand sources of correlations (e.g., Waller et

al 2016b)
• Then we need to be able to account for the errors in the

assimilation
◦ Sample matrices need reconditioning
◦ Appropriate software needs to be in place

25 of 26



Conclusions

• It is important to be able to account for observation error
correlations
◦ Avoid thinning (high resolution forecasting)
◦ Improved forecast skill score

• First we need to estimate correlations
◦ Desroziers et al (2005) diagnostic can be used with caution
◦ Can understand sensitivity to the assumed stats in the assimilation

(Waller et al. 2016a)
◦ Can help us to understand sources of correlations (e.g., Waller et

al 2016b)

• Then we need to be able to account for the errors in the
assimilation
◦ Sample matrices need reconditioning
◦ Appropriate software needs to be in place

25 of 26



Conclusions

• It is important to be able to account for observation error
correlations
◦ Avoid thinning (high resolution forecasting)
◦ Improved forecast skill score

• First we need to estimate correlations
◦ Desroziers et al (2005) diagnostic can be used with caution
◦ Can understand sensitivity to the assumed stats in the assimilation

(Waller et al. 2016a)
◦ Can help us to understand sources of correlations (e.g., Waller et

al 2016b)
• Then we need to be able to account for the errors in the

assimilation
◦ Sample matrices need reconditioning
◦ Appropriate software needs to be in place

25 of 26



References

G. Desroziers, L. Berre, B. Chapnik, and P. Poli. Diagnosis of observation, background and analysis-error statistics in
observation space. Q.J.R. Meteorol. Soc., 131:3385-3396, 2005.

Fowler, A. M., Dance, S. L. and Waller, J. A. (2018), On the interaction of observation and prior error correlations in data
assimilation. Q.J.R. Meteorol. Soc., 144: 48-62. doi:10.1002/qj.3183
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