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Advantages of satellite Sea Surface Salinity (SSS)
(relative to in situ)

* Systematic monitoring of features with smaller scales and
shorter periods: important for cross-scale interactions

* More uniform spatiotemporal sampling improves the ability to
estimate horizontal gradients: important for frontal genesis,
eddy-mean flow interaction, and biogeochemistry

* Global coverage: important for studying teleconnections &
land-sea linkages.

L-band radiometry is the only viable technology for systematic,
synoptic monitoring of mesoscale SSS, coastal ocean & marginal
sea SSS.



Complementarity with in-situ observations

* Linking surface & subsurface structure
* |n-situ measurements important to cal/val of satellite SSS

* Stable L-band satellites can help identify mooring conductivity
sensor drifts



Comparison of SMAP & SMOS SSS with mooring 1-m and Argo 2.5 m salinity
Tang et al. (2017, RSE, in press)
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Comparison of SMAP & SMOS SSS with mooring 1-m and Argo 2.5 m salinity
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Summary of key achievements by L-band satellite SSS

* QOceanic features/processes (e.g., hurricane haline wake, TIWs,
Rossby waves, river plumes, eddies, fronts, marginal sea salinity,
cross-shelf exchanges, dynamics of S,,,, & S,y ZOnes)

* Linkages with the water cycle (atmosphere, land).

e Relationships with climate variability (MJO, 10D, ENSO, etc.).

e Constraining ocean models & improving seasonal prediction.

 Emerging biogeochemical applications (e.g., TA, ocean
acidification, fCO,).

Filling significant SSS observing system gaps (spatiotemporal scales
& regions not/inadequately sampled by in-situ platforms).



Highlights of satellite SSS applications to study
ocean & climate processes

(focusing on examples showing advantages of satellite SSS,
as well as the synergy with other satellite measurements)

Tropical instability waves (TIWs)
Mesoscale eddies
River plumes & linkages to water cycle

Relationships to climate variability (MJO example)



Aguarius & SMOS observed new features of Pacific TIWs

Lee et al. (2012), Yin et al. (2014)

SSS from Aquarius (color shading), SST (contours in a),
surface currents (arrows in b) on Dec. 11, 2011 (7-day maps)
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Aquarius revealed faster TIW speed near than off equator
* Twice as fast as that off the equator observed by SST & SSHA (during 2011)

* Not reported in the past few decades of literature Lee et al. (2012)
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TIWs near the equator: 17-day dominant period (Yanai Waves)
TIWs away from equator: 33-day dominant period (Rossby waves)

33 day
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SMOS data revealed interannual variation of TIW speed
at the equator, faster during La Nina

Variable phase speed of 17-day SSS signal at the equator

(e) 13-22-day Band Pass SSSSMOS at 0°N
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Aquarius reveals importance of salinity in energy budget
of Tropical Atlantic instability waves (Lee et al 2014)

Surface EPE considering only SST effect

(a) Potential energy considering only SST effect (20-50 instability waves)
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Science question: How important is
salinity to Tropical Atlantic TIW
energetics?

Result: ignoring SSS effect would
under-estimate TIW-related Eddy
Potential Energy (EPE) by 3 times

Significance/implication:
SSS need to be considered in
energy budget and studies of wave-
mean flow interaction.

* Reuvisit the relative roles of
baroclinic vs barotropic instabilites



SMOS reveal SSS structure of the Gulf Stream & cold-core eddies
with unprecedented spatiotemporal resolutions

Reul et al. (2014)
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* Cold/fresh Core rings are better captured by SSS than SST during summer.
e Implication: cross-gyre salt transport by eddies

Several related studies (focusing on cross-shelf exchanges):
e.g., Grodsky, S.A., Reul, N., Chapron, et al. (2017). Interannual Surface Salinity in Northwest
Atlantic Shelf, JGR, 122, 3638-3659.



Improving environmental assessment:
SMAP sea surface salinity & soil moisture during & after the

May’15 extreme flooding event in Texas
SMAP SSS & SM - 2015-04-04
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Unusually large freshwater plume in the central Gulf of Mexico was caused
by runoff to Texas shelf (Fournier et al. 2016a)



Modulation of the Bay of Bengal river plume by the Indian Ocean
Dipole (I0OD) and ocean eddies inferred from satellite data
(Fournier et al. 2017a)
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SMAP SSS for November 2015 & 2016 with
ocean surface currents superimposed.
Thick arrows highlight eddies.

Science question: What processes influence
the variability of the climatically and
biologically important Ganges-Brahmaputra
(GB) River plume in the Bay of Bengal (BoB)?

Finding: (1) Negative 10D in 2016 caused a
stronger East India Coastal Current (EEIC) that
carried the GB river plume ~600 km further
south. (2) Ocean mesoscale eddies help
transport river freshwater plume offshore.

Significance/implication: Satellite SSS provide
new resources to monitor intraseasonal to
interannual variability of the GB river plume &
study its impacts on monsoon, cyclones, and
biological productivity.



Satellite SSS provide much better spatiotemporal coverage
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(a) September-November 2015 Argo 5-m SSS measurements averaged

within 1 degree pixels and (b) September-November 2015 average map
of SMAP SSS (complete coverage was actually achieved in 8 days)

Fournier et al. (2017a)



Improvement of new SMOS SSS product & consistency with SMAP SSS
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New SMOS SSS product (CATDS, Boutin et al.
2017) brought significant improvements in
marginal seas & coastal oceans.

New SMOS SSS very consistent with SMAP SSS

SMOS & SMAP SSS further enhanced sampling
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Sea surface salinity (SSS) & the Madden-Julian Oscillation (MJO)

(Guan et al. 2014)

Contribution of SST & SSS to surface density
anomalies during a composite MJO life cycle

(Phases 1-8, in different regions)
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Use of satellite SSS for constraining
E-P forcing & ocean models
Ocean model salinity are affected by:
« significant E-P forcing error;
» use of river discharge climatology;
* relaxation to SSS climatology;

e errors in model physics (e.g., advection & mixing) & numerics

Satellite SSS have the potential alleviate these limitations



Large spread among 12 E-P products
(Yuetal 2017)
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Lack of interannual variations of SSS near river mouths
in ocean models

SSS near the Mississippi River mouth from Aquarius, SMOS, and an operational
global ocean assimilation product
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Significant implications to marine biogeochemistry



Impact of satellite SSS assimilation on inverse estimate
of E-P variability in GECCO2 (Kbohl et al. 2014)
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Improvements of JMA/MRI global ocean data assimilation
system by assimilating Aquarius SSS (Toyoda et al. 2014)

Example for North Pacific Mode Water distribution in winter of 2012
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Assimilation of Aquarius SSS & AVHRR SST improves representation

of ocean surface currents (Chakraborty et al. 2014)

Spatial amplitude of the 1t EOF mode of surface currents

Indian Global Ocean Data Assimilation System
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1.0

Impact of satellite SSS assimilation on seasonal-to-

interannual prediction for 2011-2014

a) Correlation with observed SST
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ASSIM_T,: baseline experiment, assimilation of all subsurface temperature data.
ASSIM_T,_SSS,q: assimilation of all subsurface temperature and in-situ salinity data.
ASSIM_T,_SSS,: assimilation of all subsurface temperature and Aquarius SSS data.
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The latter has higher correlation & lower RMSE wrt observed SST for lead times > 4 months.

Need long data record (covering many ENSO events) to establish
the robustness of impacts on prediction
-> continuity of L-band mission important
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Ongoing work based on NASA/GMAO ocean data
assimilation & coupled model hindcasts

Experiment Design

Experiment Name Period Assimilation Variables
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SMOS-NINO15 Project funded by ESA

Coordinated experiments between UK Met Office & Mercator Ocean
to investigate the impacts of assimilating satellite SSS from SMOQOS,
Aquarius and SMAP on simulating the 2015/16 El Nino period.
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Ongoing effort for satellite SSS assimilation at UKMO

Spatial information in satellite SSS data

Martin, M.J., 2016, doi:10.1016/j.rse.2016.02.004.
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* SSS fronts agree reasonably well between model
and obs.

* SMOS data shows some frontal structures in the
main part of the Gulf Stream which the model
doesn’t represent.

 Surface warming has masked the underlying
structures in SST in August.

Courtesy of Matt Martin, UK Met Office


http://www.sciencedirect.com/science/article/pii/S0034425716300323

Other ongoing efforts for satellite SSS assimilation

* Estimating the Circulation & Climate of the Ocean (ECCO) 4D-VAR
* NOAA: Global Real-time Ocean Forecasting System (RTOFS); West

Coast Ocean Forecasting System (WCOFS)
* Chinese National Marine Environmental Forecasting Center

Estimating the Circulation & Climate of the Ocean

about ecco | model | automaticdifferentiation | newsarchive | publications |

ECCO was established In 1998 as part of the World Ocean
Circulation Experiment (WOCE) with the goal of combining a
general circulation modei (GCM) with diverse observations in
order to produce a quantitative depiction of the time-
evolving global ocean state. The importance of such an
endeavor Is recognized by numerous national and
international organizations, such as the WMO's World
Climate Research Programme (WCRP) and UNESCO's
Intergovernmental Oceanographic Comission (IOC). These
programs have all noted the necessity of synthesizing the
diverse remotely-sensed and In-situ observations with known
dynamics and thermodynamics through a GCM. ECCO
products are In support of the Climate Variability and
Predictabllity (CLIVAR) programme and the Global Ocean
Data Assimilation Experiment (GODAE).

more

AUTOMATIC/ALGORITHMIC
DIFFERENTIATION (AD)

Since the mid-1990's, groups at MIT, SIO, JPL
and GFDL have applied automatic/aigorithmic
differentlation (AD) tools for generating
tangent linear and adjoint code for ocean
clrculation and climate studies. ECCO relles
heavily on the AD tool TAMC and Its
commecial successor TAF. The ECCO group is
also Involved In the development of a new
open-source AD tool OpenAD.

More details can be found here.

ECCO'S GENERAL CIRCULATION MODEL

ECCO PRODUCTS

The ECCO code Is based on the MIT general
circulation model (MITgcm), a numerical
mode! designed for study of the atmosphere,
ocean, and climate. It comes with a variety of
packages Including physical
parameterizations, a sea-ice model,
blochemical components, and allows flexible
porting across various HPC platforms.

For more details on the MITgcm click
here.

ECCO products as well as input fields and
quality-controlled observations are freely
avallable from several data servers
through varlous applications (including
DODS/OPeNDAP, LAS, GDS, Dapper, SRB,
Ingrid).

A summary of available ECCO products
and data servers can be found here.

November 2017: ECCO Tutorial @ Ocean Sciences 2018:

Local forecast by
"City, St" or

Zip Code
w

Text-only version

Cllck here to go to the MMAB home page

Global Real-Time Ocean Forecast System

(limited access)

Home Z-Levels |sopycnals Gulf Stream Metrics WOCE Data Access About

Frequently Asked

Publications
Personnel
NOAA Staff Dir

Contact Us
Visit EMC on

NOTICE: As of 17 Oct 2017 at 0Z, the Global RTOFS model has been upgraded to
version 1.1.2. Changes include:

» The number of vertical layers has increased from 32 to 41.

+ The core HYCOM model has been coupled to the Los Alamos Laboratory's
Community Sea lce model (CICE)

+» Updated bathymetry

« Updated climatology

» Updated Equation of State from 9 to 17 terms

More information on the upgrade can be found in the Release Notes (pdf).

facebook

The global operational Real-Time Ocean Forecast System (Global ARTOFS) at the
Mational Centers for Environmental Prediction is based on an eddy resclving 1/12°
global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national
backbone capability of ocean modeling at the National Weather Service in a strong
partnership with the US Nawy.



Future challenges & requirements for satellite SSS
(based on community inputs to US Decadal Survey 2017-2027)

e Continuity to extend data record
* Enhancing spatial resolution and getting closer to the coasts.

* Improving accuracy, esp. at high-latitude oceans



Community white papers in response to US Decadal Survey
advocating for future requirements of satellite SSS

Response to Decadal Survey RFI:
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Continuity to extend data record

* Important for monitoring changes in the water cycle

* Necessary for studying and predicting seasonal, interannual,
and decadal climate variability.
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Enhancing spatial resolution and
getting closer to the coasts

Meso- & sub-mesoscale ocean dynamics
Shelf-open ocean interactions
Linkage of ocean and terrestrial element of the water cycle.

Importance to biogeochemistry.



Spatial scales to resolve: the Rossby radius

Baroclinic Rosshy radius of deformation (in km)
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Improving high-latitude SSS accuracies

L-band SSS accuracies: Tropics & subtropics v high-latitudes X
Zonally averaged STD of ASSS for (Aquarius - Argo-SI0) & (Argo-SIO - Argo-UH)

(a) Zonally averaged std. dev. of SSS differences on 1%%1° scale
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Community input to US Decadal Survey: adding P-band to L-band
to improve high-latitude SSS & sea ice thickness measurements
(Lee et al. 2016, NRC)

s L-band and P-band sensitivties

Rationale: . ///::;ﬂ::i
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Ty at P-band has ~
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Additional values of P-band radiometry

, , , Sea-ice thickness measurement
* Improving sea ice thickness error (Kaleschke et al. 2015)

measurements by complementing radar o

= SMOS
CS2
= SYN

and L-band radiometry measurements

80

* Better thickness measurements for 1st-
year ice in turn help improve SSS
retrievals near sea ice.

P-band can
help reduce
this

60 -

40

Relative error [%]

e Other applications: ice shelf, land (e.g., =i
soil moisture, evapotranspiration).

Soil Moisture (cm® water/cm? soil)
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Summary

* L-band satellite SSS have demonstrated the values to improve
* the understanding of ocean processes and their linkages with the
water cycle & climate variability;
* environmental monitoring/assessment;
e ocean state estimation & seasonal prediction
* Important to understanding satellite SSS error characteristics,
and take into account sampling differences from in-situ data

* L-band SSS have unique advantages while being synergistic to other
observations to study Earth System Science.

* Requirements for future satellite SSS:
* Continuity
* Enhancing resolution
* Improving accuracy, esp. in high-latitude oceans
* Technology; retrievals



Backup



Main Sources of validation data for Satellite SSS
Distribution of Argo floats

Over 300 “surface”(5-m) obserVatlons per day _x *Fo-
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Also ship-based measurements, esp. high-resolution thermosalinograph (TSG) data



Two important issues in assessing the accuracies of satellite SSS

1. Sampling differences between satellite & in-situ measurements

Satellite SSS: averages within footprints (& time windows for L-3 data)
In-situ measurements: point-wise, instantaneous

Significant differences between the two in regions of strong
spatiotemporal variability (e.g., rain bands, river plumes, strong
eddying currents)

Caution needed for interpreting differences between satellite & in
situ salinity differences (esp. for level-2 SSS & “co-located”
individual in-situ data)

2. Effect of near-surface salinity stratification

Satellites measure salinity in the upper cm

Most in-situ measurements are >=5 m (Argo) or >= 1 m (mooring)
Importance of salinity stratification in the upper meter under
certainty conditions (e.g., during SPURS & SPURS?2 field campaigns)



High-res TSG observations show large std. dev. of SSS within 100-
km intervals in regions with strong variability
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STD of SSS Difference for Aquarius - Argo-SIO & Argo-SIO vs. Argo-UH
for different spatial scales (Lee 2016)
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“Global” (65N-65S) area-weighted averages STD of SSS differences for Aquarius vs.
Argo-SIO & Argo-SIO vs. Argo-UH for different spatial scales: seasonal time scales

Table 1. Globally averaged standard deviation values (in psu) between Aquarius and
Argo-SIO and between Argo-SIO and Argo-UH.

1°x1° 3°x3° 10°x10°
Aquarius vs. Argo- 0.16 0.14 0.09
SIO (total)
Argo-SIO vs. Argo- 0.10 0.09 0.04
UH (total)
Aquarius vs. Argo- 0.11 0.11 0.07
SIO (seasonal)
Argo-SIO vs. Argo- 0.06 0.05 0.02
UH (seasonal)
Aquarius vs. Argo- 0.10 0.09 0.05
SIO (non-seasonal)
Argo-SIO vs. Argo- 0.07 0.06 0.03
UH (non-seasonal)

* Uncertainty of Aquarius SSS in estimating large-scale SSS changes is
< 0.05 psu on monthly & longer time scales.
* Time averaging could further reduce the uncertainty.




Global STD of Aquarius-Argo SSS for various spatial & temporal scales
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Global RMSD of Aquarius-Argo SSS for various spatial & temporal scales

Total anomaly
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Time-mean SSS (09/2011-05/2015)

Tlme-mean SSS from Argo -SI0
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Where to get satellite SSS products?
For all Aquarius & SMAP SSS: https://podaac.jpl.nasa.gov/

Jet Propulsion Laboratory
California Institute of Technology

Follow Us

odaac

Home  Dataset Discovery Data Access [AEERTLCTGELGEE Missions  Multimedia  Community  Forum  About

Gravity Sea Surface Salinity Sea Surface Temperature (SST) Ocean Currents & Circulation = Ocean Surface Topography Ocean Wind Sealce

AQUARIUS
| SMAP . . Data Links

» Browse Datasets for Aquarius Project

Data
=
ﬁhquariusa’SAC-D * FTP
The Aguarius/SAC-D observatory launched on June 10, 2011 will take a "skin " reading of ocean salt content. * OPeNDAP
« THREDDS: Salinity/Density, Ocean Winds
« PODAAC-WS
= State of the Oceans (SOTO 3D and
SOTO2D)
Salinity in the ocean is defined as the grams of salt per 1000 grams of water. One gram of « LAS
salt per 1000 grams of water is defined as one practical salinity unit or one PSU. Salinity + HIiTIDE

varies due to evaporation and precipitation over the ocean as well as river runoff and ice

melt. Along with temperature, it is a major factor in contributing to changes in density of

seawater and therefore ocean circulation, Relaled Links




Where to get satellite SSS products? (cont’d)

For all L-band satellite SSS:

ESA funded SMOS Pilot Mission Exploitation Platform (SMOS Pi-MEP):

https://pimep-project.odl.bzh/data
has http links to various level-2 to level-4 satellite SSS products

€ | O @ | httpsy//pimep-project.odl.bzh/overview 110% & QO SISS satellite salinity > B 3 A Q9

SMOsS
pi-mep Salmlty

RISNiISSIOnh Exploitation Plateforin

Overview Data Processings Tools Case studies Contact Follow us
B Biog . Documents

Sept 14, ESA Advanced Ocean Remote Sensing Training Course 2017/09/13 | PIMEP DATASETS.xisx
Mal 3, 2017 : Pi-MEP Sclence Advisary Group meeting 2017/04/27 | 3_2_PI_MEP_SMOS_SAG_v2.pptx
PIMEP_SAG_CM1_agenda_final.pdf

Other useful resources:
Satellite and In-situ Salinity (SISS) Working Group: http://siss.locean-ipsl.upmc.fr/
Aquarius: https://aguarius.nasa.gov

N



https://pimep-project.odl.bzh/data
http://siss.locean-ipsl.upmc.fr/
http://aquarius.nasa.gov/

Indirect effect of salinity on SST (thus air-sea

interaction): example — effects of the barrier layer
20 25 20 25 240 245 250 Density (ka/m3)

Barrier layer: a S stratified, 0 I B B B

rgo profile in

T uniform layer below the 20 -

trqpical Indian Ocean

mixed layer but within the 10

isothermal layer
60

Depth (m)

Barrier layer tends to 80
inhibit the vertical mixing 100
of heat between the mixed
layer and thermocline;
amplifies SST response to ‘ | 1

B0 B2 354 3J5 3J3 Salinity (PSU)
surface heat flux. | | | | | Y

20 2 2 26 28 Temperature (C)
(e.g., Lukas & Lindstrom 1991, Sprintall & Tomczak 1982, Maes et al. 2005 )

120

“Take a grain of salt when studying SST”



SSS as an indicator of global water cycle changes

* Large uncertainties in E-P estimates
* Difficulty to measure global river discharges

e SSS directly respond to E-P, river discharge, and sea ice
formation/melt



Subtropical N.Atl. SSS as a predictor of Terrestrial Rainfall
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Li et al. (20164, Science Advance): for Sahel rainfall
Li et al. (2016b, J. Clim): for US Midwest rainfall



SSS trend 1950-2000: intensification of global water cycle?
Durack et al. (2012, Science)
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Net freshwater flux (evaporation — precipitation)

Mean sea surface salinity (SSS)

Observed 50-year SSS trend

Correlation of SSS change & mean SSS
(fresh gets fresher, salty gets saltier)
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A combined land/sea assessment of the impacts of the May 2015
severe Texas flooding event

2015-05

201508
T Precip

ation| > Problem: How does the May’15 severe flooding in
3 It 240 . . i

o E Texas affect terrestrial hydrologic conditions,
1203 marine environment, and their linkage?

“_W’*2 Finding: Intense rainfall in May’1l5 over Texas

s, o2 £ Caused saturated soil & record river discharges into
x| 0142 the Gulf of Mexico (GoM). The unusually strong
3272 Loop Current & its eddy shaped the freshwater

=
32 0.00»n . . .
0.050 into a “horseshoe” pattern, affecting regions not

£
36 ¢ | 10.28 ©
[s2]

S lly influenced by river pl
noes’s normally influenced by river plume.
0.012 §
7N S R o.oosg e epe . .
: = Significance: Implications to the extent of the GoM
0.003

May and Auust 2005 epv  hypoxic zone and the Flower Garden Bank coral
precipitation, SMAP soil moisture

and sea surface salinity sss) and ~~ Fe€f ecosystem. Multi-variate satellite observations
MODIS Ocean Color.. Vectors:

JASON-2 surface currents. (eg, SMAP, GPM/TRMM, MOD'S, JASON-Z,
August 2015 surface current speed GRACE, and SMOS) are essential to provide
(ASON-Z) showing the Loob  jntegrgted assessment of land/sea impacts

Current, its eddy, and schematics of

the flow pattern that shaped the associated Wlth ﬂOOding.

“horseshoe” freshwater plume

Current Speed & schematics
(2015-08)
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Fournier S., J.T. Reager, T. Lee, J. Vasquez, C. David, & M. Gierach (Aug. 2016, GRL).



Improving ancillary data (e.g., SST) for SSS retrievals at
high-latitude oceans also important

* L-band brightness temperature has weak sensitivity to SSS at high latitudes
e accuracy of ancillary SST becomes more important
* but high-latitude satellite SST also have significant errors

Comparison of GHRSST blended SST products an Arctic buoy SST
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Castro et al. (2016)
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