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Talk outline

1. Introductory remarks on polar predictions and sea ice

2. Sea ice thickness from L-band observations and ocean analysis

3. Large-scale atmospheric impacts of sea ice

4. Sea-ice predictions
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Common thread:

the challenge of observing and modelling

the thickness of thin sea ice (< 1m)

 L-band radiances provide a unique opportunity



Year of Polar Prediction

• Goal: Improving predictions of weather and environmental 

conditions in polar regions and beyond

• International collaboration between academia, operational forecasting 

centres, and stakeholders

• Improving the polar observing system, as well as weather and climate 

prediction models in polar regions

Coordinated by the 

World Meteorological Organization (WMO)

Period: 

mid 2017– mid 2019 (Launch: 15th May 2017) 

www.polarprediction.net

@polarprediction



Challenges for polar predictions

4Bauer et al., QJRMS 2016

• spread of daily-mean analysis 2m temperature 

between major operational NWP centres for DJF 2014

• enhanced spread over snow- and sea-ice covered 

areas

− high variability and strong dependence on model 

assumptions

− sparse network of conventional observations

− challenges for satellite retrievals

Must make better use of existing and new 

satellite-based observations to progress



Reminder #1: simplification of sea-ice heterogeneity in models and observations
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small-scale observations large-scale models and observations

ice thickness transect from Operation IceBridge

aerial photograph of broken sea ice with melt ponds
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Reminder #2: sea-ice variability and trends are very strong
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Antarctic: always good for surprises

Arctic: rapidly changing mean state = major challenge 

to modelling and forecasting

Sea-ice thickness (SMOS) in different years with same ice extent



Overview of remote-sensing sea-ice observations

• Sea-ice concentration from higher-frequency passive microwave radiometry

– mature observation type, since 1979

– uncertainties mostly well characterized

• drift, deformation, stresses, leads, surface temp, snow, ...

• sea-ice thickness:

– new types of satellite sensors since the 2000s, short records

– several complementary methods:

• thermal infrared (e.g. MODIS)

• laser altimetry (ICESat and ICESat2)

• radar altimetry (CryoSat2)

• L-band radiometry (SMOS, SMAP, Aquarius)

– uncertainties often large and poorly characterized

– indispensable for modern sea-ice modelling efforts
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Ricker et al., TC 2017



L-band sea-ice thickness retrievals (University of  Hamburg method)
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• emissivity model for a dielectric slab of sea-ice

• ice temperature Tice and ice salinity Sice need to be 

estimated from independent data sources and 

thermodynamic modelling

 L-band TB is a function of ice thickness d

Kaleschke et al., GRL 2012

Maass 2013, PhD thesis

Tian-Kunze et al, TC 2014



SMOS-SIT product and ORAS5 reanalysis
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UHH SMOS sea-ice thickness product

• daily-mean  Arctic maps on 12.5 km grid

• from SMOS TB intensity for 0-40° incidence

• available from October to April since 2010 

with <24h latency

ECMWF ORAS5 reanalysis

• global ocean-sea ice reanalysis on ~ ¼ degree grid

• model: NEMO3.4 including LIM2 sea ice

• observations: in-situ T & S, altimeter sea surface 

height, sea-ice concentration, no sea-ice thickness

• assimilation: NEMOVAR using 3DVAR-FGAT

Provides ocean and sea-ice initial conditions

for all ECMWF forecasts

 compare daily mean Arctic sea-ice thickness for the winters 2010/11 to 2016/17



Comparison of ORAS5 and SMOS sea ice thickness (not assimilated)
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• Early in the freezing period: good agreement

• Late in the cold season: model consistently thicker than observations

 caused by both model and observation errors depending on feature/region

SMOS + unc.

ORAS5 ens.
CryoSat

EM-Bird

SMOS + unc.

ORAS5 ens.

Location in the Laptev Sea Location in the central Baffin Bay

Tietsche et al. (2017), The Cryosphere Discussions

CryoSat



Ice thickness from ORAS5 and SMOS in late winter
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Extensive 

fracturing in the 

Beaufort Sea

Thin ice in 

Baffin Bay?

extensive 

polynias in 

Laptev Sea 

7 Apr 2015

reasonable 

agreement in 

Barents and 

Kara Seas



Year-to-year changes in large-scale ice thickness
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Area of Arctic covered by sea ice thicker than various thresholds in November



Near-surface temperature over sea ice
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• NWP analysis error of t2m over remote sea ice can be large

• sea-ice thickness can modify surface heat balance considerably

 scope for analysis improvement through better representation of sea-ice properties?

Validation of ECMWF t2m analysis against in-situ observations from drifting buoy

Jan 2016



Large-scale atmospheric response to sea-ice surface warming

14Semmler et al., Clim Dyn 2016

Idealized forecast experiments (408 pairs of 

forecasts for DJF 1979-2012) with ECMWF 

atmospheric forecast model (cycle 37r3):

Significant reduction of synoptic activity (std. dev. 

of high-pass filtered z500) with increased sea-ice 

surface temperature
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Uncertainty in sea-ice thickness means uncertainty in sea-ice concentration 
later in the forecast
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Day et al., GRL 2014

Idealized seasonal forecast experiments for 

summer in HadGEM climate model:

Increase in forecast RMSE when replacing perfect 

sea-ice thickness with climatology in identical-twin 

forecast experiments



Remote near-surface impact of sea-ice anomalies
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Mori et al., Nature Geoscience 2014

Composite of DJF 2m 

temperature difference between 

years with low and high sea-ice 

cover in the Barents and Kara 

Seas (ERA-Interim 1979-2013)

Reduced sea ice leads to cold 

Eurasian winters



Improvements in sea ice and high-latitude skill in ECMWF seasonal forecasts

SEAS4 SEAS5

2m air temp

(area mean 70N)

sea ice extent

ACC of detrended time series 1981-2015 

(>0.6 stippled)

• SEAS5 became operational 8 

November 2017; it includes a 

sea-ice model, among many 

other improvements 

• SEAS5 outperforms SEAS4 

for most target months and 

lead times

• Characteristic seasonal and 

lead-time variations in skill

 sea ice impact on surface 

temperature predictions



Seasonal predictions for navigating ice-infested waters
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Melia et al., ERL 2017

• Optimal shipping routes through the Arctic for mid-September 

(New York / Rotterdam  Yokohama)

• Routes calculated from sea-ice conditions in idealized 

seasonal forecasts started in preceding November and July

• Each line corresponds to solution from one ensemble member, 

thick lines where several ensemble members agree



Extended-range sea ice forecasts for ship routing

1 July 2017
(30 days ahead)

15 July 2017
(45 day ahead)

• FMI produced a product demonstrator to help plan an ice breaker transit 

from Korea to Finland in July 2017

• Based on sea-ice concentration and thickness from ECMWF extended-

range forecast from 1 June 2017, together with hindcasts for calibration

• Calculate Risk Index Outcome (RIO) from the International Code for 

Ships Operating in Polar Waters (adopted by IMO, in force since 2017)

• Ice breaker transit was through the Northwest Passage on 5 – 29 July 

(record for earliest passage in the season)

Figure courtesy of A. Gierisch and P. Uotila

Green: RIO ≥ 0, permitted

Yellow: -10 ≤ RIO < 0, reduced speed

Red: RIO < -10, not permitted

Colour saturation: uncertainty of forecast



Summary

• Sea ice is a key player for improving polar predictions

• Observing, modelling and predicting the presence of thin sea ice (<1m):

challenging, but of paramount importance for progress

• Growing body of evidence for impact of sea ice presence and thickness on 

large-scale atmospheric circulation and forecasts from days to seasons

• For the marine sector (e.g. shipping), importance of sea-ice thickness 

increasingly acknowledged

• low-frequency microwave radiances are currently the only way to observe 

the thickness of thin sea ice with sufficient spatial and temporal coverage
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Seamless earth system ensemble predictions at ECMWF

• forecasts with 50 ensemble members, global domain with 18/36km resolution

• ocean model NEMO 3.4, atmosphere model IFS

• “seamless”: very similar model with the same initial conditions across all time ranges

• includes dynamical sea ice model LIM2

• for medium/extended range operational since November 2016 (Cycle 43R1)

• for seasonal range operational from November 2017 (SEAS5)


