CliMAF

Sharing — Simplifying — Optimizing

Climate Model Assessment Framework
Scripting environment to share science

Jérébme Servonnat
CEA Engineer/Researcher at LSCE-IPSL, Saclay/Paris, France
Evaluation of the IPSL coupled model

Aseoce Nthnale d la Recherche MODELES NUMERIQUES
g - N - CONVERGENCE .

CliIMAF)

Sharing — Simplifying — Optimizing

Starting point (2013)

CMIP5 has been a pretty heavy and painful exercise...
We need better tools to face the challenge of CMIP6: V NR MODELES NUMERIQUES
ANR Convergence => IPSL, CNRM, CERFACS - CONVERGENCE,

Among our needs, we want to make a significant step in the way we analyse our
simulations, and make the evaluation of our models: WP5 Convergence:

CliMAF)

Sharing — Simplifying — Optimizing

CliMAF core team: Stéphane Sénési, Jérdme Servonnat, Ludivine Vignon
+ contributors: Marie-Pierre Moine, Emilia Sanchez-Gomez, Olivier
Marti, Patrick Brockmann, Sébastien Denvil

CliMAF) Gathering users expectations

Sharing — Simplifying — Optimizing

The specifications to develop ClIiIMAF are the result of:

- two dedicated consultations of the potential users at CNRM/CERFACS and IPSL
- Multiple meetings between the development team

- one year between the first discussion and the first line of code

=> Very important for us to associate the users in defining the specifications of this
community tool if we want them to use it

CliMAF) Main requirements

Sharing — Simplifying — Optimizing

* Aneasy and common way to access various data trees/organizations (outputs from
different models, reference datasets)

e Really simplify those daily pretreatments: selecting a period, a geographical domain,
computing a climatology, regrid datasets...

* Do standard plots (maps/curves) and build an html page

e Avoid recomputing! | don’t want to compute the same result twice

Share diagnostics => gathering the local expertise in bigger tools, taking into account
that the diagnostics can be written using a variety of languages...

=> Toward a seamless approach: building blocks that will help scientists in their daily
work and provide an efficient framework for the more complex/big tools

Technical points in short

* Works on CF-compliant netcdf files

* Produces netcdf files and figures

e Uses CDO for the pre-treatments

 And NCL for the plots

* Smart cache to fully handle outputs and avoid recomputing

* Easy to install (clone of git repo, no compilation):
https://github.com/senesis/climaf

* Documentation: http://climaf.readthedocs.io/

CliMAF is a ‘command line’ manager : a scripting facility which
allows to launch and pipe user-provided diagnostic scripts (any
language) and binaries

1.
2.
3.
4.

Outline

Data access

Cache management
How to add my script
The C-ESM-EP

1.
2.
3.
4.

Outline

Data access

Cache management
How to add my script
The C-ESM-EP

Sharing — Simplifying — Optimizing

ClIMAF) 1. Data access

In CliMAF we define and access the data with ds() (shortcut to cdataset()):

datl = ds(project = 'CMIP5',
model = 'IPSL-CM5A-LR', experiment = 'historical’,
simulation = 'rlilpl’', variable = 'tas’',

frequency = 'monthly', period = '1980-2005')

Mandatory / specific

ds() takes attributes (or facets, or keywords) that define the dataset in a
CliMAF ‘project’:

- Definition of path/filename pattern(s)

- That include a set of keywords (arguments for ds())

CliMAF) 1. Definition of a project

Sharing — Simplifying — Optimizing

Definition of a project: example with the CMIP5 archive at IPSL:

-- Define the path/filename pattern and include attributes
pattern=‘/prodigfs/project/CMIP5/output/*/${model}/${experiment}/$
{frequency}/${realm}/${table}/${simulation}/latest/${variable}/${variable}
${table} ${model} S${experiment} ${simulation} YYYYMM-YYYYMM.nc’

—-- Declare that the project ‘CMIP5’ takes the following attributes
cproject(‘CMIP5’, ('frequency’, 'monthly’), ‘model’, ‘realm’, ‘table’,
‘experiment’, ensemble=[‘model’,’'simulation’],separator='%")

-- Finalize the ‘CMIP5’ project
dataloc(project=‘CMIP5’, organization=‘generic’, url=pattern)

CliMAF

Sharing — Simplifying — Optimizing

1. Definition of a project

Definition of a project: example with the CMIP5 archive at IPSL:

-- Define the path/filename pattern and include attributes
pattern=‘'/prodigfs/project/CMIP5/output/*/${model}/${experiment}/$

{frequency}/${realm}/${table}/S${simulation}/lates variable {variable}
${table} ${model} S${experiment} S${simulati w

—-- Declare that the project ‘CMIP5’ takes the following attributes
cproject(‘CMIP5’, ('frequency’, 'monthly’), ‘model’, ‘realm’, ‘table’,
‘experiment’, ensemble=[‘model’,’'simulation’],separagor='%")

-- Finalize the ‘CMIP5’ project
dataloc(project=‘CMIP5’, organization=‘generic’, uyl=pattern)

Selecting a period required by the user:
=> On the files matching the request, covering the

period
= Multiple files: no overlap in time

CliIMAF)

Sharing — Simplifying — Optimizing

1. Convention/standardization

datl = ds(project = 'CMIP5',
model = 'IPSL-CM5A-LR', experiment = 'historical’,
simulation = 'rlilpl', variable = 'tas’',

frequency = 'monthly', period = '1980-2005')

Standard / specific

Building a community tool involves at some point to propose (smart and

community defined) conventions/standards to put the users on the same path:

- minimum set of common attributes (variable, period, simulation,
frequency; largely inspired by the CMIP5 data reference syntax) => can be
used downstream by the plotting scripts or an automated pre-treatment

- use the CMIP variable names and work with SI Units in CliMAF

-- Variable name alias for ‘my project’ (possible offset/scale)
calias(’‘my_project’, ‘cmip name’, ‘var_in_file’, offset=273.15)

CliMAF)

Sharing — Simplifying — Optimizing

1. Example: access to various projects

datl = ds(project = 'CMIP5',
model = 'IPSL-CM5A-LR', experiment = 'historical',
simulation = 'rlilpl', variable = 'tas’,

frequency = 'monthly', period = '1980-2005')

dat2 = ds(project = 'IGCM_OUT',
root = '/ccc/store/cont003/thredds’, login = 'p86caub’
model = 'IPSLCM6’', simulation = 'CM605-LR-pdCtrlOl’,
frequency = ’‘seasonal’, clim period = '2020 2029',
variable = ‘tas’)

dat3 = ds(project = 'ref climatos',
variable = ‘tas’, product = ‘ERAInterim’)

Access to various data organizations:

* using the same variable names

* And the same units

* Without duplication of data
=> Can be provided to diagnostics that use the same convention
=> CliIMAF is a soft way for the user to get used to new standards

Outline

1. Data access

2. Cache management
3. How to add my script
4. The C-ESM-EP

CliMAF -

Sharing — Simplifying — Optimizing

2. Cache management

At this stage, datl is only a CliMAF (python) object.

In [6): from climaf.api import =
datl = ds(project = 'CMIPS5',
model = 'IPSL-CM5A-LR', experiment = 'historical’,
simulation = ‘rlilpl‘', variable = 'tas’,

frequency = 'monthly’', period = '1980-2005')

We get the result file (execute the underlying operations) with cfile():

In [7): cfile(datl)

Out(7): '/prodigfs/ipslfs/dods/jservon/climaf cache2/bc756/6d385/06e04/5£531/d3ab0/a2064/330£f/c26cl/b900£/337c5/8ffe5/5.nc’

I
Cache directory (user) Output path/filename (CliMAF)

CliIMAF automatically provides a unique path/filename to the output based the
location of the cache directory provided by the user and a hash of the CIiMAF
expression.

CliIMAF) 2. Cache management

At the same time, CliIMAF stores in an index file (in the cache directory) the
name of the result with the expression describing the sequence of CliMAF
operations that lead to the result :

cat /prodigfs/ipslfs/dods/jservon/climaf cache2/index

Idpo
S"ccdo(space_average(ds('CMIP5.rl1ilpl.tos.2009-2099.-27,-12,205,215.CESM1-BG
C.rcp45.monthly.*.ocean.last')),operator="'yearmean')"

pl
S'/prodigfs/ipslfs/dods/jservon/climaf_cache2/5eecb/8a876/22ccd/28870/f0adf/
62c21/93478/3ab54/2ef0f/3a04b/3d07c/0.nc'

p2
sS"ccdo(space_average(ds('CMIP5.r1ilpl.tos.2009-2099.-27,-12,205,215.CESM1-C
AM5. rcp85.monthly.*.ocean.last')),operator="'yearmean')"

p3
S'/prodigfs/ipslfs/dods/jservon/climaf_cache2/8a654/63872/bcb94/e7998/60786/
a4680/19c34/0dd9c/9e760/ee5d4/al24f/6.nc’

p4

This way, CliMAF fully documents the provenance of its results

CliMAF

Sharing — Simplifying — Optimizing

2. Cache management

my result = ccdo(space average(ds('CMIP5.rlilpl.tos.
2009-2099.-27,-12,205,215.CESM1-
BGC.rcp45.monthly.*.ocean.last')),operator="'yearmean’)

A 4
cfile(my result)

v
Scan Index

Available

v

Result
'/prodigfs/ipslfs/dods/jservon/climaf_cache2/bc756/6d385/06e04/5£531/d3ab0/a2064/330£f/c26cl1/b900£/337c5/8ffe5/5.nc’

CliMAF

Sharing — Simplifying — Optimizing

2. Cache management

my result = ccdo(space average(ds('CMIP5.rlilpl.tos.
2009-2099.-27,-12,205,215.CESM1-
BGC.rcp45.monthly.*.ocean.last')),operator="'yearmean’)

A 4
cfile(my result)

Search for unde_rlying objects

Not available l
2
Scan Index Execute the sequence of operations
Available Store result/edit the index
! !

Result
'/prodigfs/ipslfs/dods/jservon/climaf_cache2/bc756/6d385/06e04/5£531/d3ab0/a2064/330£f/c26cl1/b900£/337c5/8ffe5/5.nc’

CliMAF

Sharing — Simplifying — Optimizing

2. Cache management

my result = ccdo(space average(ds('CMIP5.rlilpl.tos.
2009-2099.-27,-12,205,215.CESM1-
BGC.rcp45.monthly.*.ocean.last')),operator="'yearmean’)

Save a significant amount of time
when executing big tools that:
e crashed for any reason ing objects

e Or because you want to modify

of diagnostics

Available Store result/edit the index

Result

'/prodigfs/ipslfs/dods/jservon/climaf_cache2/bc756/6d385/06e04/5£531/d3ab0/a2064/330££f/c26c1/b900£/337c5/8ffe5/5.nc’

1.
2.
3.
4.

Outline

Data access

Cache management
How to add my script
The C-ESM-EP

CliIMAF)

Sharing — Simplifying — Optimizing

3. How to add my script?

Any script that:
* runs within a command line

* takes as arguments an input netcdf file and an output netcdf file / figure
* And optional arguments if needed

can become a CliMAF operator => included in the CliIMAF framework (data
access, cache management...)

In [2]: cscript('my Rscript', 'Rscript my script.R ${in} ${out}')

Out[2]: CliMAF operator : my Rscript

(I have real examples to show you if you are interested)

Outline

1. Data access

2. Cache management
3. How to add my script
4. The C-ESM-EP

Evaluating/comparing a set of
simulations/models at IPSL/CNRM

Aseoce Nationale d la Rechereh] MODELES NUMERIQUES
y NR - CONVERGENCE

[CliIMAF Earth System Mode! = X

& - (C | & Sécurisé https://esgf.extra.cea.fr

Comparison setup: Benchmark_C-ESM-EP

Atmosphere
NEMO

PISCES

ORCHIDEE

ENSO
TurbulentAirSeaFluxes
Atlas Explorer

The C-ESM-EP user interface in short ClIMAF

How to provide my datasets in datasets_setup.py

${WORKDIR}/C-ESM-EP/main C-ESM-EP.py

my comparisonl/Atmosphere Surface/ | Sets of
NEMO_main/ diagnostics
datasets_setup.py

!

Main driver and
‘comparison’ directories

models = [
dict(project=‘CMIP5’', model=‘'CNRM-CM5',
experiment=‘historical’, period=‘1980-2005"),
dict(project=‘CMIP5’', model=‘'IPSL-CM5A-MR’,
experiment=‘historical’, period=‘1980-2005"),

dict(project=‘IGCM OUT’, model=‘IPSLCM6’,
simulation=‘CM6012.1-pd-ttop-02’, login=‘p86caub’),
dict(project='IGCM OUT’, model=‘IPSLCM6’,
simulation=‘CM6012.1-pd-spli-01’, login=‘p86caub’),
1

=> the user can provide any dataset described by a CliMAF project to the
C-ESM-EP

=> Python dictionaries = really powerful way to provide instructions to
the tool and finess your analysis

24

CIIMAF) |dentified limitations of CliMAF

Sharing — Simplifying — Optimizing

» cache: slows down when overloaded => need to implement a smarter way
to clean the cache (we already have some, but still not optimal)

» generates small netcdf files (not so file-system-friendly...)

» specific, refined analyses are not necessarily easy to do => if you can’t do
what you want with the core CIiMAF functionalities, you need to develop
your own script and plug it (worth it if you plan to use it routinely)

=> rather use the language you’re used to

CliMAF) Where we are now

Sharing — Simplifying — Optimizing

* acouple of training sessions (CliIMAF and C-ESM-EP) at IPSL and CNRM/
CERFACS

* we have been really satisfied with CliMAF to build the C-ESM-EP

* more and more scientists start to use it to build their own data processing
routines

* Kind of old-school but very easy to understand for a scientist who is not
really into object-oriented programming

CliMAF

Sharing — Simplifying — Optimizing

Where we are now

* More than the code itself (not so much manpower at the moment...), we
are interested to share our experience and ideas => services for the users

Where we are now

 More than the code itself, we are interested to share our experience and
ideas in terms of services for the users

Thank you for your attention!
Questions?
jerome.servonnat@|sce.ipsl.fr

Atlas Explorer

Climatology / difference maps on demand

® ' ® /[y [CIMAF- Atlas Explorer] X

& C | @ Sécurisé https://esgf.extra.cea.fr/thredds/fileServer/work/p86jser/p86jser_atlas_atlas_explorer_Benchmark_C-ESM-EP_ANM/p86jser_atlas_atlas_explorer_Benchmark_C-ESM-EP_ANM.html

CIiMAF - Atlas Explorer

T Simulations — datasets

+ 2M Temperature (tas)

CliMAF

$29ds W03IsNd + So|qeldep

python parameter files, containing lists of dictionaries:
- One for the datasets (datasets_setup.py)
- One for the variables + customs specs

1PSLCMO CADOT 4 LR gd0H1 1 (vs ERART) PSLCME CHEDT-LP gt 920101 (18 EFANT] PSLCUS CUBIS LR p0CH 01 (8 ERANT) IPSLOMS CUBOTR-LR g0k SraCres 1 (vs ERANT IPSLCME CMBI7-4A G001 (vs ERANT) IPSLEH: G oL 1 01 iy EVINT) P5LHBENEEZATSIHE Lo ENSIT

)
Sharing ~ Simplifying - Optimizing "

Qw @

29

The C-ESM-EP user interface CliMAF

How to provide my datasets in datasets_setup.py -

® ' ® /[y [CIMAF- Atlas Explorer] X

& C | @ Sécurisé https://esgf.extra.cea.fr/thredds/fileServer/work/p86jser/p86jser_atlas_atlas_explorer_Benchmark_C-ESM-EP_ANM/p86jser_atlas_atlas_explorer_Benchmark_C-ESM-EP_ANM.html aQw| @

CIiMAF - Atlas Explorer

Atias Explorer Simulatlons - datasets

unt e

£
Y |
% models = [% |
dict(project=‘CMIP5’, model=‘CNRM-CM5', =
experiment=‘historical’, period=‘1980-2005"), ‘
T dict (project=‘CMIP5’, model=‘IPSL-CM5A-MR’,
T ey experiment=‘historical’, period=‘1980-2005"), = |
P -
— d |
. son urtace Sty (0 dict(project='IGCM_OUT’, model=‘IPSLCM6’,
;»7:%@. simulation=‘CM6012.1-pd-ttop-02’, login=‘p86caub’), 3!
i - | dict(project=‘IGCM OUT’, model=‘IPSLCM6’, &
= simulation=‘CM6012.1-pd-spli-01’, login=‘p86caub’), i
« Zonal Wind (ua)]

=> the user can provide any dataset described by a CliMAF project to the
C-ESM-EP

30

CliIMAF)

Sharing — Simplifying — Optimizing

1. Using python dictionaries

Interesting feature: we can use a python dictionary to provide the attributes /
keywords to ds():

dat dict = dict(project = 'CMIP5',
model = 'IPSL-CM5A-LR', experiment = 'historical',
simulation = 'rlilpl’', variable = 'tas’,

frequency = 'monthly', period = '1980-2005')
dat = ds(**dat dict)

Consequence: If you make a python list of dictionaries to specify multiple
datasets, you are highly flexible in the content of the dictionaries (update, pop)

