@

METEO
FRANCE

epygram

A Python package to handle meteorological fields from various formats.

Alexandre Mary *, Sébastien Riette >

1. Météo France : CNRM/GMAP/COOPE
2. Météo France : CNRM/GMME/MESO-NH

Py4ESS, Reading, Nov. 28th 2017



@ Introduction
@ Needs
@ Target language : Python
Main concepts
o field, geometry and resource
o fid
@ toolbox
@ functionalities : an overview

Status
Demo



Introduction in concepts Status Demo

Needs

Handling NWP/Climate models output

@ closest to the model (historical files, model variables & geometry) and/or
post-processed output

@ proxy for data processing (plots, extractions, aggregation, time series...)

@ several data formats : GRIB, netCDF, FA (Arpege/AROME native), LFA
(diagnostics)...

@ meta-data

@ Context : large heterogeneity in languages & graphical tools...




Introduction in concepts Status Demo

Needs

Handling NWP/Climate models output

@ closest to the model (historical files, model variables & geometry) and/or
post-processed output

@ proxy for data processing (plots, extractions, aggregation, time series...)

@ several data formats : GRIB, netCDF, FA (Arpege/AROME native), LFA
(diagnostics)...

@ meta-data

@ Context : large heterogeneity in languages & graphical tools...

Goal

= one library, with eased file/data, file/metadata, data/metadata interactions.
In a language of rich downstream applications...

| A




Introduction in concepts Status Demo

Target language : Python

@ lots of applicative libraries available (graphical, scientific, system, interfacing
with Fortran/C, 10 & data formats...)

@ object-oriented : seemed mandatory for file/data/metadata interactions
@ free, expanding community
@ interactive/script duality

@ interoperability with Vortex — Meteo France scripting system to run models
for operational & research

@ easy-reading, easy-learning (...)




Introduction Main concepts Status Demo

field, geometry and resource

@ Resource : container of fields encoded in a format.

@ Field : collection of values along a given geometry, with a given temporal
validity.
Most usual field = horizontal 2D field. (but also : vertical profile or section,
transect, 3D field, local point(s)...)

@ Geometry : collection of spatial positions in 3D (a “grid") on which is
colocalized a field

read

Field
Geometry

R r
i, esource

validity,




Introduction i Status Demo

fid

Field identifier (fid)
@ What does the data represent ?

@ ex : U-component of wind at (hybrid-pression) level 58

o FA : SO58WIND.U.PHYS

o GRIB2
discipline=0, # meteorological products
parameterCategory=3, # momentum
parameterNumber=2, # U-component of wind
typeofFirstFixedSurface=119, # hybrid-pressure levels
level=568, # level 58




Status Demo

Introduction

fid

Field identifier (fid)
@ What does the data represent ?
@ ex : U-component of wind at (hybrid-pression) level 58

o FA : SO58WIND.U.PHYS

o GRIB2
discipline=0, # meteorological products
parameterCategory=3, # momentum
parameterNumber=2, # U-component of wind
typeofFirstFixedSurface=119, # hybrid-pressure levels
level=568, # level 58

Resource, fid, Field, Geometry, Validity

| A\

r = epygram.formats.resource(filename, ‘‘r’’)
fld = r.readfield({‘‘shortName’’:*’2t>’})
print(fld.validity, fld.geometry)

fld.data += 273.15

r.writefield(£f1d) )




Introduction Main concepts Status Demo
ofel To)

toolbox

Various other useful classes and functions to deal with :

@ Classes for temporal Validity (incl. cumulative processes), Angles, Spectra...

@ default values & options = epygram.config // customizable in incremental
userconfig

@ externalised side-modules :

o Python interfaces to subroutines from IFS-ARPEGE-AROME Fortran
code (FA, LFI, LFA, spectral transforms : arpifsdpy),

o interface to vortex to get resources from research/operations

o web interface for quick, basic, plotting of research/operations runs

@ a set of “quicklook” command-line tools, e.g. epy_plot.py




Main concepts
°

functionalities : an overview

Geometries

@ localisation : grid < Lon/Lat, including neighbours-search
@ extraction of sub-geometries

@ azimuth, distance, transects computation




roduction in concepts Status Demo

functionalities : an overview

Geometries

@ localisation : grid < Lon/Lat, including neighbours-search
@ extraction of sub-geometries

@ azimuth, distance, transects computation

@ compute diagnostics : statistics, spectrum, histogram...

data transformation : operations (incl. overload of operators), spectral
transforms, distortions

@ time operations : reductions, smoothing, decumulation

interpolation : punctual, grid2grid resampling

plot : maps, series, profiles, sections, Hovmoller, animations




Introduction Main concepts Status Demo

@0

Present status

@ start=Jan.2014, S-test=Dec.2014, v1.0.0=Jun.2016, now=v1.2.13

@ SCM = GIT, license = CeCILL-C (open-source),
project = https ://opensource.umr-cnrm.fr/projects/epygram

@ Use in MF : expanding in research (~ 50p.) & operations (Vortex : date
control, fields movements...)

@ ALADIN, HIRLAM consortia : spreading...

@ HTML Sphinx documentation, some Notebooks tutorial




Introduction Main concepts Status Demo
PYe)

Present status
@ start=Jan.2014, B-test=Dec.2014, v1.0.0=Jun.2016, now=v1.2.13

@ SCM = GIT, license = CeCILL-C (open-source),
project = https ://opensource.umr-cnrm.fr/projects/epygram

@ Use in MF : expanding in research (~ 50p.) & operations (Vortex : date
control, fields movements...)

@ ALADIN, HIRLAM consortia : spreading...

@ HTML Sphinx documentation, some Notebooks tutorial

@ missing : read/write spectral fields in GRIB (FA only)

@ some performance optimizations (profiles extractions, ...)




And tomorrow ?

@ continuous integration of new functionalities
@ observations support (ODB/BUFR) ? 3D-visualisation ?

@ more collaborative ?




Introduction in concepts Status Demo

oe

And tomorrow ?

@ continuous integration of new functionalities
@ observations support (ODB/BUFR) 7 3D-visualisation ?

@ more collaborative ?

o’

Portability

@ designed for Python 2.7 (portability to Python3 under consideration...)

@ dependances : numpy, scipy, matplotlib, pyproj, argparse,
gribapi, netCDF4, pyresample

@ formats activation in config = no need to install unrequested formats libraries
o if required, key point is to compile arpifs4py Fortran interfaces (gmkpack)

@ other dependances : side-packages from vortex, distributed
along :footprints, bronx, taylorism




Demonstration
= Notebooks




	Introduction
	Needs
	Target language: Python

	Main concepts
	field, geometry and resource
	fid
	toolbox
	functionalities: an overview

	Status
	Demo

