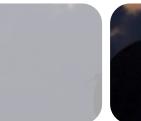


Python based Data Science on Cray Platforms

Rob Vesse, Alex Heye, Mike Ringenburg - Cray Inc



Overview

Supported Technologies

- Cray PE Python Support
- Shifter
- Urika-XC
 - Anaconda Python
 - Spark
 - Intel BigDL machine learning library
 - Dask Distributed
 - TensorFlow
 - Jupyter Notebooks

• Use Cases

- Met Office JADE Platform
- Nowcasting

Supported Technologies Overview

- Python in Cray PE
- Shifter
 - Containers for XC
- Urika-XC Analytics for Cray XC systems
 - Anaconda
 - Apache Spark
 - Dask Distributed
 - Tensorflow
 - Jupyter Notebooks

Python in Cray PE

- > module load cray-python
- > python example.py
- > echo "Coming December..."
- > module load craypython/2.7.13.1.102
- > python2 example2.py
- > module load cray-
- python/3.6.1.1.102
- > python3 example3.py

- Currently single module bundling Python 2 and 3
 - Stock Python distributions
 - Version numbering matches PE versions
- From December release separate Python 2 and 3 modules
 - Exact version numbers may change in release but will correspond to Python versions
 - Have corresponding python2 and python3 commands
 - Both contain a python command, most recently loaded module takes precedence
 - module load cray-python without explicit version will use Python 2
- Built against relevant Cray libraries (libsci and mpt)
- Includes common data science libraries:
 - numpy, scipy, mpi4py and dask

Shifter

- Container support for HPC
 - Originally developed at NERSC
 - Officially supported by Cray since CLE 6.0UP02
- Containers allow for encapsulating applications and their dependencies
- Supports common image repositories and formats
 - e.g. Dockerfile and Docker repositories
- Key features for HPC environments
 - Provides better security model than Docker
 - Users run as themselves inside the container
 - System admin can control mount points
 - Enables MPI and GPU support for containerized applications
 - Loopback Cache feature avoids metadata overheads

Urika-XC

- Provides a suite of analytics and data science software that runs on the XC platform
- Requirements:
 - CLE 6.0UP02
 - Shifter
- Provided as a module
 - module load analytics
- Dynamically creates analytics clusters in the context of an existing WLM reservation
 - Spark and/or Dask clusters
 - Added in 1.1 release:
 - Google TensorFlow and Intel BigDL for machine learning
 - Jupyter Notebooks for interactive development
 - > module load analytics
 - > salloc -N 10 start_analytics
 - > spark-shell

URIKA-XC

Urika-XC - Python Dependency Management

> conda create -n example > source activate example (example) > conda install pandas (example) > python --version Python 3.6.2 :: Continuum Analytics, Inc.

> source deactivate example

```
> conda create -n py2 python=2.6
```

> source activate py2

(py2) > python --version

Python 2.6.9 :: Continuum Analytics, Inc.

- For analytics products we use Anaconda to manage dependencies
 - Provides users the ability to manage isolated Python environments with their desired package and Python versions
- Environments can be consumed by relevant applications e.g. Spark, Dask etc.
- As of 1.1 release:
 - Can optionally use Intel Distribution of Python if preferred
 - Add --idp flag to start_analytics

Urika-XC - Apache Spark

- Popular in-memory analytics package
 - http://spark.apache.org
 - Currently version 2.1.0
 - 1.1 release will upgrade to 2.2.0
- Always run as part of Urika-XC jobs
- Supports jobs written in multiple languages
 - Scala/Java
 - Python
 - F
- Interactive Scala, Python and R shells available
 - Can also batch submit
- Integrates with Anaconda environments for dependency management
- Also includes the Intel BigDL machine learning libraries
 - Currently version 0.3.0

Urika-XC - Dask Distributed Python

> salloc -N 10 start_analytics --dask --dask-env example --dask-workers 8 --daskcores 2

- Popular distributed Python analytics package
 - https://distributed.readthedocs.io/en/latest/
- Optionally runs as part of Urika-XC jobs
 - Co-exists with Spark cluster
- Integrates with Anaconda for dependency management

Urika-XC - TensorFlow

- Popular machine learning framework
 - Originally developed at Google, now open source
 - Version 1.3
 - New feature in our 1.1 release
- Machine learning workflows can be written in Python
- Supports two modes of distribution
 - Google gRPC (TCP/IP)
 - Cray MPI (via Cray developed plugin)
- Supports both CPU and GPU nodes
- Our analytics module provides several helper scripts for launching distributed jobs

Urika-XC - Jupyter Notebooks

💭 Jup	yter	500_	00_2013_storm_precip_plots Last Checkpoint: a few seconds ago (autosaved)					
File	Edit	View	Insert	Cell	Kernel	Widgets	Help	
+	% (ව 🖪	↑ ↓		C Code	•	CellToolbar	

Precip Analysis for Oct 2013 Storm - Use Ensemble Mean

In [4]: # Create directory for output images. ds_name = 'mogreps-uk-2013-oct' image_out_dir = analysis_dir + ds_name + '-precip-es-mean' os.makedirs(image_out_dir, exist_ok=True)

global forecast_cutoff
forecast_cutoff = 6

The foldby function results in a single partition. We need to use the cluster so precip_data = extract_precip_dask_bag(ds_name, merge_and_collapse)

In [5]: list(precip_data)

Out[5]: [(datetime.datetime(2013, 10, 29, 0, 45), [<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; gr (datetime.datetime(2013, 10, 30, 9, 50), [<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; gr (datetime.datetime(2013, 10, 28, 6, 0), [<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; gr (datetime.datetime(2013, 10, 28, 3, 20), [<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; gr (datetime.datetime(2013, 10, 28, 20, 55), [<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; gr (datetime.datetime(2013, 10, 26, 23, 35), [<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; gr (datetime.datetime(2013, 10, 26, 23, 35), [<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; gr (datetime.datetime(2013, 10, 26, 20, 10).

- Provides UIs for data scientists to develop analytics workflows in
 - Mix code, prose, images etc in a single document
 - Can be shared for collaboration
- Offloads execution to underlying analytics framework
 - Spark/Dask/TensorFlow/Bi gDL etc
- SSH tunnels used to expose notebook server to outside world i.e. user laptops

Use Cases - Met Office JADE Platform

- Met Office "JADE" Data Analysis platform
 - Collaboration with Met Office Informatics Lab
 - Goal to replace powerful desktops with analysis environment accessed via web browser
 - Leverages :
 - DASK distributed python engine
 - Jupyter interactive notebooks
 - IRIS Python Library for Meteorology and Climatology
 - Developed/prototyped on AWS
- Will be able to run on their XC systems once Urika-XC
 1.1 is released

Use Cases - Nowcasting

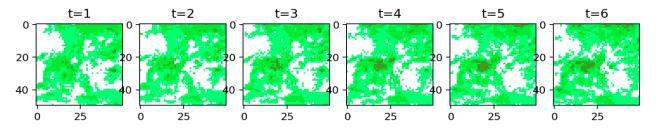
Create very short term forecasts on demand

• Goals:

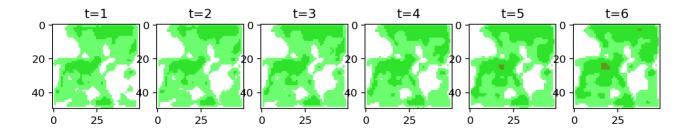
- Investigate the utility of machine learning for very short term (0-1 hour) precipitation forecasts
- Gain insights into the full deep learning workflow to drive product roadmap
- Approach
 - Machine learning used to train a convolutional neural network on historical observational data for a region
 - Once trained model can be used to generate a very short-term forecast based upon current/past observations
 - Past observations useful as we can compare predictions with subsequent observations for evaluation
 - i.e. Train once, Predict many
 - Python implementation of workflow encapsulated in a Jupyter Notebook

Use Case - Nowcasting - Sample Results

Recorded Reflectivity



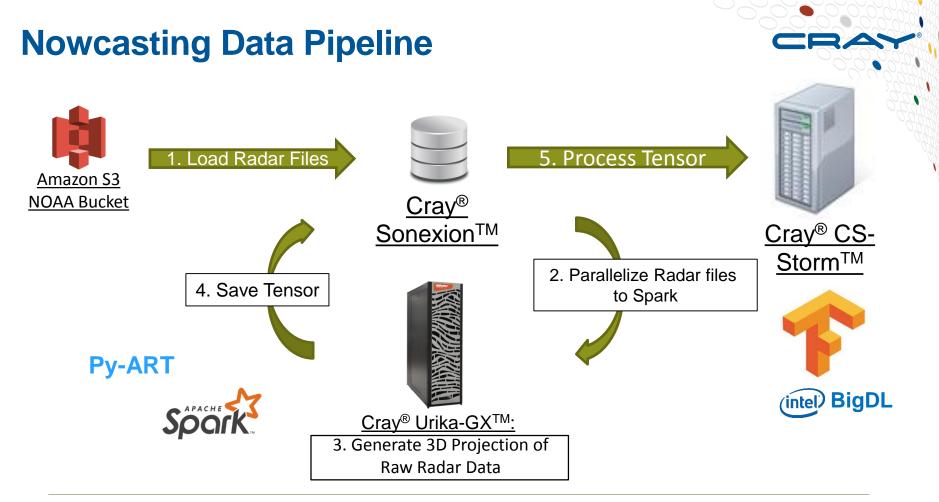
Predicted Reflectivity



rvesse@cray.com mikeri@cray.com aheye@cray.com

Nowcasting Case Study

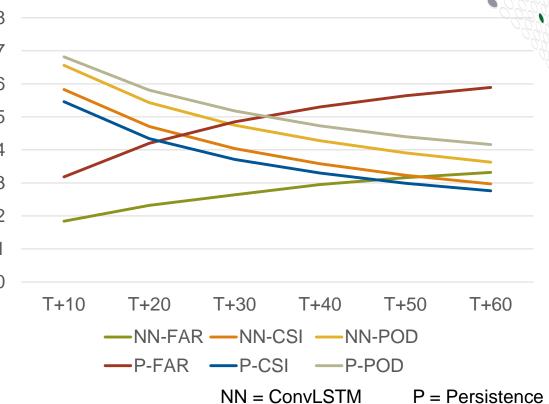
Additional Details and Results



Nowcasting Preliminary Results

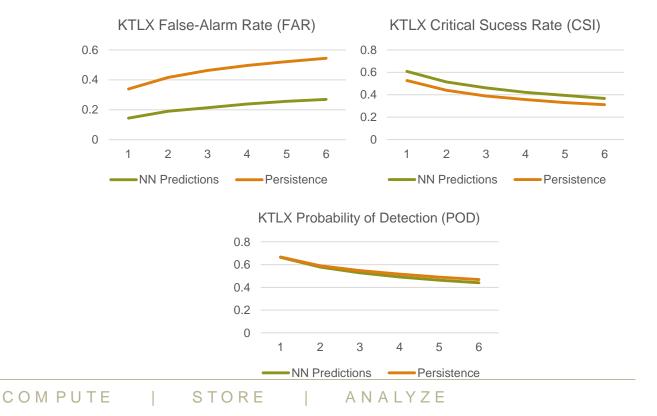
ConvLSTM vs Persistence, KTLH station

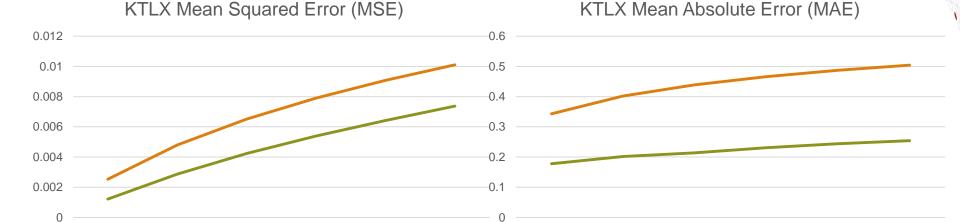
- FAR: False Alarm 0.8 Rate – lower is better_{0.6}
- CSI: Critical Success 0.5
 Index higher is 0.4
 better 0.3
- POD: Probability of 0.2
 Detection higher is 0.1
 better 0



Nowcasting - Further Results

- Station: KTLX, Oklahoma City
- 1 Timestep = 10 minutes
- Blue: Predictions made by DL
- Red: Constant Prediction of Persistence





-NN Predictions

Persistence

Nowcasting - Further Results

NN Predictions

Persistence