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What is HarmonEPS?

HarmonEPS is the convection permitting EPS of the
HIRLAM consortium, a EPS built around the
ALADIN-HIRLAM system

Configurations:
e Arome (+Alaro in earlier cycles)
10 - 20 members
2.5 km
3D-Var
SURFEX
~54h
With or without lagging
Different choices for perturbations

Nested in IFS ENS or IFS high. res. (SLAF)
Operational systems:
e MEPS (MetCoOp EPS, Sweden, Finland and
Norway)
e COMEPS (Denmark)
Systems under development in Spain, The Netherlands,
Belgium and Ireland (next presentation)




What is HarmonEPS?

A variety of perturbations are available, or is being
developed:

e Initial condition uncertainty
o  Perturbing with ENS:
HarmonEPS ANA + (ENS mbr - ENS control)
o EDA
o LETKF

e Lateral boundary conditions
o ENS at the boundaries

o  SLAF: Differences between ECMWF high res. with
different ages

e Surface perturbations (from Meteo France)

e Model error representation - this talk
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Representing model error in HarmonEPS

e Tested, oris being tested or developed in HarmonEPS:

©)
©)

Multi-model (Arome and Alaro)

Multi-physics (Different combinations of schemes for turbulence,
microphysics and radiation)

SPPT

RPP (Randomly Perturbed Parameters - constant in time and space)
SPP (Stochastically perturbed parameterizations - varying in time and
space)

Cellular automata stochastic deep convection scheme in Alaro




Short about effect of
multi-model in GLAMEPS

A motivation for early work on model error in HarmonEPS

2.5 months in winter 2014 - Sochi Olympics




GLAMEPS is Multi-model

GLAMEPS consists of 4 equally sized sub-ensembles, two Alaro and two Hirlam

Continuous Rank Probability Score : S10m CRPS 10m wind speed
Verification Period: 2014011506-2014033106
ALL Stations
2.0+ -Full GLAMEPS 54 members
W -Subset of GLAMEPS with 12+1
15- members from the two HIRLAM

W% sub-ensembles (26 members)

-Subset of GLAMEPS with 6+1
members from all four
sub-ensembles (28 members)

Continuous Rank Probability Score
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Number of sub-ensembles
matters more than the number of
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Frogner et al 2016: https./doi.org/10.1175/WAF-D-16-0048.1



https://doi.org/10.1175/WAF-D-16-0048.1

Multi-model - calibrated

GLAMEPS consists of 4 equally sized sub-ensembles, two Alaro and two Hirlam

Verification Period: 2014011506-2014033106 Spread/sklll 10m Wlnd Speed
ALL Stations

-Full GLAMEPS 54 members
20- -Full GLAMEPS 54, calibrated
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T
Em— -Subset of calibrated GLAMEPS
& with 6+1 members from all four
sub-ensembles (28)
0.5+
Number of members matters after
calibration. Multi-model still
0.0 — - - - beneficial after calibration and

6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 bias removal
Frogner et al 2016: https./doi.org/10.1175/WAF-D-16-0048.1
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GLAMEPS
showed clear
clustering
according to
model in the
Ophelia storm

___EC highres




“Multi”’-model in HarmonEPS (Arome and Alaro)

Experiment period: 20130511-20130531
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Martin Ridal and Inger-Lise Frogner



Spread , RMSE

Spread and skKill

Multi-model: Arome and Alaro

Mslp
11 member ensembles

CRPS
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Martin Ridal and Inger-Lise Frogner



Examples of MAE and bias for individual members

Selection: ALL using 824 stations Selection: ALL using 441 stations
Rh2m Rh2m Period: 20160620-20160815 Cloud cover Period: 20160620-20160815  Cloud cover
Hours: {00,06,12,18} Hours: {00,06,12,18}
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Bjorn Stensen



Multi-physics with different parameterizations in HarmonEPS (Arome)

Experiment period 3 weeks in summer 2015: 20150720-20150810
Different settings and combinations of schemes for turbulence,
microphysics and radiation in the members

One or two changes in each member

Same choice for each member for every run
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m/s

Selection: ALL using 823 stations Selection: ALL using 822 stations

Ul0Om Period: 20150720-20150810 U10m  Period: 20150720-20150810
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Bjorn Stensen, Lisa Bengtsson, UIf Andrae
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Representing model error by multi-model or
multi-physics

e Scores improved by multi-model/multi-physics, if models are of ~same quality

e The improved skill of multi-model is seen also after calibration and bias removal

e Suggests that the improved performance of multi-model goes beyond the effects of error
cancellation and that it accounts for more basic aspects of model uncertainty

BUT:
e Members cluster
e Different biases/model climates in the members can be a problem - calibration needed
e Itis hard to maintain a multi-model system
e A multi-physics system is maybe easier

o but different members with different settings will always have the same
characteristics
o Typically make use of older schemes that probably are inferior to the newest




SPPT and parameter perturbations (towards SPP):
SPPT is available in HarmonEPS (1 pattern, 3 at ECMWF)

RPP (Randomly perturbed parameters) - our first attempt at perturbing
parameters by stochastically varying the parameter for each member and
each cycle, but kept constant in time and space

SPP - Stochastically perturbed parameterizations is being developed in
HarmonEPS
o So far tested for one parameter
o Normal distribution for parameter - log-normal as in IFS to be
implemented shortly
o IFS framework for SPP is being implemented in HarmonEPS
o As RPP - but varying in time and space according to a 2D random
pattern
m we have tested two pattern generators: CA and SPPT



Examples of patterns used:
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A third option: SPG - Stochastic Pattern

Generator

Advantages with SPG:

e Designed for limited area
e Easily tunable spatial and
temporal length scales

e Fast computations

e proportionality of scales:
In reality, longer spatial
scales ‘live longer’ than
shorter spatial scales,
which ‘die out’ quicker.

Implemented in Arome cy38 by

Mihaly Szics, in HarmonEPS cy40
by Ole Vignes (ongoing)

M. Tsyrulnikov and D. Gayfulin

Spatio-temporal covariances

Ranges: t=0...12 h, r=0...750 km
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Separable correlation model




SPPT and parameter perturbations (towards SPP):

Experiments:

Perturbed parameter - VSIGQSAT - a parameter that allows lower relative
humidity for (low) clouds to form

“SPP” - Coupled to SPPT-pattern generator to allow for
spatio-temporal correlations

Compared to a reference with no perturbation of VSIGQSAT

SPPT implementation in HarmonEPS by Alfons Callado, RPP/SPP implementation by Ulf Andrae



Spread . RMSE

Pmsl

Spread and skill, 2016053000 - 2016061500
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UIf Andrae and Inger-Lise Frogner



Spread , RMSE

Spread and skill, 2016053000 - 2016061500
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UIf Andrae and Inger-Lise Frogner

Small positive
impact on spread
from perturbing
VSIGQSAT ~
same as from
SPPT

RPP better than
SPP

SPPT slightly
better RMSE



Bias

1000

500

Mean bias
Less precipitation with SPPT

Higher cloud base with SPPT

Less low clouds with SPPT, more low clouds
with perturbing VSIGQSAT
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1.009

Continuous Rank Probability Score
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Small, positive impact of SPPT on S10m (and other parameters)

Very little impact of perturbing VSIQSAT except for cloud related
parameters where there is a small, but positive, impact of the same
order as SPPT

UIf Andrae and Inger-Lise Frogner



EC seminar

AROME-EPS SPPT impact "

* adds beneficial spread to low-level T, HU, wind, cloudiness
« small but robust improvement of performance measures (Brier, ROC, etc)

» mostly neutral impact on precip, undesirable drying effect
caveat : ’in an underdispersive ensemble, anything that adds spread will From F. Bouttier,
improve scores’ ECMWEF Annual seminar 2017
__10mwindspeed ~~ 6-hrain
(Bouttier 2012)
- [ s rmse | g
£ ;| &spread | o
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SPPT | precip spread
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Cellular automata

Lagged ensemble, Alaro, 5.5 km

Ensemble mean Precip. [mm/12h]

Ensemble spread Precip. [mm/12h]
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Bengtsson et al 2013 doi:10.1002/q/.2108




Further work on upper air perturbations in HarmonEPS:

Continue to develop SPP in HarmonEPS
o Technical implementation work
o Include more parameters

Study closer the effect of the different perturbations, looking into spatial and temporal scales of
the pattern, test new pattern generator (SPG), comparing RPP and SPP with SPPT

Use tendencies as a diagnostic tool
Look more into SPPT settings

Estimate uncertain parameter values, and pdf’s, in Harmonie-Arome by use of EPPES
(Ensemble Prediction and Parameter Estimation System) in HarmonEPS
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Parameter estimation

SLate spae unceTtainty

In practice i
1. Draw a set of parameters from the | j./jil'-'—\l\_k i
distribution N(, ) ﬁ-i /1 A
2. Run an ensemble of forecasts with | // \ }(/
L8 \ 7

these (sub-sets of) closure / _f
parameter values y

3. Evaluate runs i
® Criterion can be chosen freely, e.g. paramcter unecrial ey
temperature bias at 1000 hPa —— sstimasod poscrioe
® Determines which parameter sub-sets work 0 Rappmrtis: A
best <

4. Update proposal distribution

parameter G,

N(p. %)
5. Draw a new set of parameters and i -
repeat --v‘fdvdmuf-ndmd-f\m;,-:-:mp?i-:..:ul .

P. Ollinaho



Representing model error in the grey zone?

e Multi-model and multi-physics, including calibration, will probably do the
work - but hard to maintain and clustering of the members makes it harder
to use for the forecasters

e SPPT:

o Less convincing results for convection permitting EPS (but can
probably be improved)

o Previous talk: “current stochastic model uncertainty representations
very dependent on tendencies from the deep convection scheme” -
can explain why it is not so good for convection permitting EPS?

e SPP:

o Able to focus on the processes you want, so should work for all
resolutions, including the grey zone

e Stochastic parameterizations (like CA) should also work as
demonstrated by use in Alaro with 5.5 km horizontal resolution




And don’t forget the surface ...

Perturbed parameters in MEPS are
roughness, albedo, SST, soil temperature,
soil wetness, LAl

The perturbations has a typical length scale
of 150 km and may be either multiplicative
or additive.

Improves the scores, especially for T2m
and RH2m

Spread , RMSE

Surf pert on
Surf pert on, surf assimilation all members

Spread and skill - Rh2m

Spread & Skil[RMSE) : RH2m
Verification Period: 2017052600-2017061300
ALL Stations

Score
— RMSE

= = Spread

Andrew Singleton, Janne Kauhanen, Bjorn Stensen



Thank you




Physic settings for each member

Mbr000: Arome ref.

Mbr001: HARATU = TRUE. Turbulence scheme based on the scheme in the
RACMO model. (new mixing length, new stability functions)

Mbr002: LOCND2 = FALSE. Switch off microhysics option for separate ice-phase
representation (lvarsson, 2010).

Mbr003: EDMF(CMF CLOUD = DIRE) + HTURBLEN = DEAR. "Direct"
cloud scheme coupled to the mass-flux in EDMF (instead of the "statistical" cloud
scheme), and alternative mixing length in the CBR scheme (Deardorff (1977).
Mbr004: EDKF(CMF UPDRAFT =" RAHA'). Eddy diffusion mass-flux scheme
with (Rio et al. 2008 and 2010) mass-flux formulation. ("Direct" cloud scheme)
Mbr005: EDKF. Eddy diffusion mass-flux scheme with (Kain-Fritsch) mass-flux
formulation. ("Direct" cloud scheme)

Mbr006: ACRANEB2. ACRANEB2 radiation scheme in AROME.

Mbr007: LGRSN = TRUE + LLCRIT = TRUE. Convert graupel to snow more
efficently in microphysics scheme, and more efficient precipitation from shallow
convective cumulus in cold conditions.

Mbr008: LOCND2 = FALSE + HARATU = TRUE.

Mbr009: ACRANEB?2 + EDKF.
Mbr010: 'RLWINHF’ =" 0.7." . Inhomogeneity factor for cloud-representation in a
grid-box in radiation scheme switch to 0.7.

Bjorn Stensen, Lisa Bengtsson, Ulf Andrae
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Parameter estimation

Ensemble Prediction and
Parameter Estimation System
(EPPES)

e Consider closure parameters as a
Gaussian distribution with some
mean y and covariance matrix X

e 1 : parameter value that
performs best on average

e 3. : how much the optimal
value varies due to evident
modeling errors

P. Ollinaho:
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