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Purpose of this talk

●    To relearn the lesson of linear theory, 
governing the development of atmospheric 
convection in Greyzone, especially the 
organized convection.

●  To advertise the numerical tools allowing for 
examination of numerical effects on the 
convective weather patterns



Open and closed cells forming in maritme conditons





Can we simulate Rayleigh – Benard 
convecton using numerical models ?

Yes, we can try!
But we will likely be underresolved, 
i.e. it is typically impossible to model 
all scales. That means we must trust 
our model to properly parametrize 
the unresolved scales.



Chaotic and organized convection in numerical simulations

Structure of  simulated convecton over heated realistc  terrain. 

Vertical velocities after 6h of simulated time are shown within the PBL 
depth. Grey iso-surfaces represent clouds, and dark green patterns mark 
updrafts at boundary layer top. Isolines and other colors show the 
topography. The only difference between the two simulations is the 
effective viscosity of numerical advection.



Cellular 
convecton with 
characteristc size 
O(10 km)
Do we represent 
nature in this 
simulaton?



 Rayleigh number in underresolved simulatons

g – gravity acceleration
h – fluid layer thickness
ν – effective viscosity
ν 

θ
 – effective diffusivity (=k)

Δθ /θ – pot. temperature,
   relative  change  over h

 Ra measures relative magnitude of buoyancy and viscous forces 

rigid/stress-free 
lower/upper 
boundary

Ra
c
=1100.657

   ≈ critcal

>>>  critcal

¿

͠͠



Convection over heated plane – effects of viscosity anisotropy
(separate effective viscosity attributed to the horizontal and vertical direction)

Piotrowski et al, “On numerical realizability of thermal convectonn,  CP, Vol. 228, 2009 

nv=kv=2.5 m2s-1

 nh=kh=2.5 m2s-1

 rn=rk=1

nv=kv=2.5 m2s-1

 nh=kh=70 m2s-1

 rn=rk=3.6e-2

ISOTROPIC ANISOTROPIC

No mean wind,  heatlux .2 Kms-1,  
dx=dy=500 m, dz=50 m, 
128x128x181 gridpoints



Stability of the modes in function of wavenumber

Classical result - stable modes are those for which constant Rayleigh
 number line lies below the black curve of marginal stability. Unstable 
modes which grow and we can observe are specifed by green region.

Rayleigh number as specifed by external conditons,
e.g. temperature diference, fuid layer thickness,
viscosity and difusivity of the fuid



In the dry atmosphere:

 

h= 1000 m 
ν = 1.7 x 10-5 m2/s
ν

θ
 =1.9 x 10-5 m2/s

Δθ /θ = O(10-3)

Ra ≈ O(1016) 

 Modified definition (Jeffreys, 1928, Priestley 1962, Ray 1965, Sheu 1980) 1980)

Km -  effective
„eddy diffusivity”

Thus, how to explain  cellular convection  ?

Km can be different in the horizontal and in the vertical.

Problem lacks conclusion and calls for atenton with the 
advent of  O(1) km resoluton NWP.



Generalized governing equatons for Rayleigh-Benard convecton
for anisotropic viscosity and Prandtl number anisotropy

Momentum eq.

Temperature eq.

Contnuity eq.

Vector laplacian

Scalar laplacian

Hadamard (entrywise) product  



Anisotropic viscosity (coefcients at diagonal entries of stress tensor) 

Prandtl number anisotropy – 
e.g. disparate approximatons 
to momentum equatons (full 
set of stress tensor entries)   

Linear theory extension – 
admitting full set of effective stress tensor entries

(separate effective viscosity attributed to horizontal and vertical direction
 AND each momentum equation)



This term describes possible producton of baroclinic vortcity

Applying operator of rotaton to momentum equatons:

Taking rotaton once again and considering the vertcal component:

Equaton set for vertcal velocity and potental temperature becomes:



Assuming soluton in Fourier modes:

Note that number of 
parameters is now
efectvely reduced.



Linear theory 
effects of viscosity anisotropy AND Prandtl number anisotropy
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Linear theory 
effects of viscosity anisotropy AND Prandtl number anisotropy
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rυ =
υvertical
υhorizontal

Infnite Prandtl 
number 

anisotropy 

Infnite 
viscosity

anisotropy 



Analogy - Equaton set for R-B convecton in nematc liquid crystals:

These equaton sets are very similar 
in viscous tensor formulaton, 
when L.C. equatons  are linearized and 
microrotaton of crystals neglected.



Possible stress tensor realizatons  -  two simple examples

Example 1: Prandtl number isotropy  - anisotropic fltering of 
model equatons

Example 2: Prandtl number anisotropy –anisotropic fltering of 
either  momentum equatons or temperature equaton

nv= nh = 0^ ^nv=kv= x m2s-1

 nh=kh>>nv=kv

kv= x m2s-1

kh>> kv

 nv  = nh = x m2s-1

nv= nh = 0^ ^

kv= x m2s-1

 kh>> kv

 nv  = nh = 0

nv= nh=x m2s-1^ ^

… or in terms
of extended
linear theory 

Numerical substantaton to follow ….



Possible stress tensor realizatons  -  two simple examples

Example 1: Prandtl number isotropy  - anisotropic fltering of 
model equatons

Horizontal viscosity and thermal difusivity

 much larger than 
 

vertcal viscosity and thermal difusivity

Viscosity is isotropic.
Horizontal thermal difusivity

 
much larger than 

vertcal thermal difusivity.

Numerical example
 to follow.

Example 2: Prandtl number anisotropy –anisotropic fltering 
of either  momentum equatons or temperature equaton



dx=dy=500 m

dz=50 m

Heat flux
hfx≈200 W/m2

 Flat lower boundary, doubly 
periodic horizontal domain,  
Boussinesq option

Reference setup alludes to contemporary, 
mesoscale cloud-resolving NWP

Example of numerical substantaton
 Series  of  LES and ILES using the EULAG model

V = [-10,-10] m/s



Convective picture – reference ILES simulations,  
but with different filters (anisotropic viscosity) 

Composite 
MPDATA: 
 1st order 
UPWIND 
every 4th  dt 

Explicit 
anisotropic 
viscosity

  1-2-1
    flter

Diagonal 2D
Spectra 

Different filtering gives similar results



Example 1. refers to the “blue circle” asymptote
Example 2. refers to the “cyan diamond” asymptote

€ 

rυ =
υvertical
υhorizontal

Infnite Prandtl 
number 

anisotropy 

Infnite 
viscosity

anisotropy 

RR

Reference (isotropic)  
marginal stability curve

Asymptotc anisotropic Prandtl 
number marginal stability curve
(e.g. large horizontal viscosity OR 
difusivity)

            Asymptotc viscosity 
marginal stability curve
(e.g. large horizontal viscosity AND difusivity)



Convection over heated plane, heatlux .2 Kms-1,
dx=dy=125 m, dz = 50 m, 512x512x180 gridpoints 

Reference  Implicit 
LES soluton afer 4h 
of simulated tme at   
1/3 of the boundary 

layer depth. 



Illustration to example 1: 
anisotropic viscosity 
rn=rk=8e-2.

Convection over heated plane, heatlux .2 Kms-1,
dx=dy=125 m, dz = 50 m, 512x512x180 gridpoints 



Illustration to example 2:
Prandtl number anisotropy 
Prv : Prh = 1 : 6e-3. The 
same Rayleigh number as 
in example 1.

 

Convection over heated plane, heatlux .2 Kms-1,
dx=dy=125 m, dz = 50 m, 512x512x180 gridpoints 



EULAG research model and COSMO-EULAG 
dynamical core of COSMO framework: numerical 
tools for studying convecton in the greyzone.
● Non-oscillatory forward in time anelastic/compressible 

solvers of idealized and realistic weather scenarios, 
respectively

● Based on fully three-dimensional MPDATA advection 
suite + preconditioned Generalized Conjugate 
Residual implicit solvers,

● Independent of any numerical or physical diffusion for 
robustness, even for integrations over extremely steep 
slopes

● Akin to Finite Volume Module developed at ECMWF



Example of Alpine weather realizaton with COSMO-
EULAG: efects of horizontal Smagorinsky difusion 
(optonal device of COSMO to prevent the model from a 
crash by horizontal shear instabilites). 



Conclusions
• Anisotropic viscosity and Prandtl number 

anisotropy can modify marginal stability and 
mode growth rates of realized R-B convection.

• Prandtl number anisotropy effects may  alter 
convective picture at much higher Rayleigh 
number than anisotropic viscosity effects 
alone, due to a modification of the mode 
stability range and growth rate change. 

• There may be an option to use the derived 
linear theory  for tune a numerical model for 
specific task.
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