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§ Uncertainty in the ocean component: can we understand its origin and 

impact on the physics? 



Ocean Processes: Temporal vs. Spatial Scales
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Ocean Model Resolution: Moore’s Law
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When models are eddy-permitting or even eddy-rich, it is 
important to tailor optimal subgridscale (SGS) closures 
to the physical and numerical setting.  The tradition in 
coarse-resolution models is to fully parameterise all eddy 
effects, and in fine resolution models to turn off all physical 
parameterisations of eddy effects and minimise numerical 
closures (e.g., Delworth et al., 2012).  Hallberg (2013) 
suggests that the scale at which this transition occurs can 
be selected dynamically and automatically during the course 
of a simulation, so that changes in stratification and latitude 
are handled smoothly in a physically-meaningful manner.  
Similarly, Fox-Kemper et al. (2011) feature a gridscale-
dependent amplification factor for a submesoscale physics 
parameterisation, which extinguishes the parameterisation 
if mixed layer depth and stratification change so as to make 
the parameterised features resolved.

The key distinction between coarse- and fine-resolution in 
terms of subgridscale closure is whether there is a scale 
separation between the gridscale and the largest eddy 

all vertical modes (mesoscale and submesoscale) remains 
distant in global models (based on Figure 1), and so part of 
the eddy effects should still be included in a MOLES closure.  
In MOLES, the closures, or subgridscale (SGS) models, 
should depend on fine adjustments of the gridscale versus 
physically-important scales (be “scale-aware”) and may take 
advantage of sampling the statistics of the resolved eddies to 
inform the SGS model (be “flow-aware”).  The combination 
of the two guiding principles of SGS models avoids “double-
counting” the largest eddies in both the resolved flow and the 
parameterisation.  When a scale separation exists in some 
regions and not in others, a hybrid of the parameterisation 
extinguishing approach exemplified by Hallberg (2013) can 
be used to transition to MOLES SGS models.

Scale-aware and flow-aware SGS modelling began with 
Smagorinsky’s (1963) viscosity scaling for three-dimensional 
(3d) turbulence in an inertial range.  The upper panel of 
Figure 2 schematises his approach.  Energy injection is 
expected to occur on large scales and then cascade through 
an inertial range to smaller scales.  In Kolmogorov’s (1941) 
idealization, energy flux (¡) through the scales of the inertial 
range (k_I) is constant and independent of the viscosity, 
which becomes important only at a smaller viscous scale 
(k_D).  If grid resolution is insufficient to resolve the small 
scale dissipation processes, a larger value of viscosity is 
selected that depends upon the gridscale and the resolved 
flow of energy toward small scales.  While there are sound 
objections to Kolmogorov’s idealization, it is a useful 
framework for estimating the scaling laws needed for SGS 
models.  By ensuring consistency, Smagorinsky devised 
a robust, scale-aware formulation of viscosity that has 
been used extensively.  Early viscosity scalings for eddy-
rich modelling followed Smagorinsky in selecting flow 
dependence on the deformation rate (Griffies and Hallberg, 
2000; Willebrand et al., 2001), and depend on a power of the 
gridscale and a tunable coefficient to provide harmonic or 
biharmonic viscosities at all latitudes.

However, the large-scale ocean is too shallow and stratified 
to have 3d turbulence.  Two-dimensional (2d) and 
quasigeostrophic (QG) turbulence, more applicable to the 
ocean dynamics on scales near the deformation radius, 
feature two conserved quantities - energy and enstrophy 
in 2d, or energy and potential enstrophy in QG - which lead 
to two distinct inertial ranges (Kraichnan, 1967; Charney, 
1971; Figure 2 lower panel).  The flow of energy to the 
largest scales depends on an energy flux, while the flow 
toward the smallest scales depends instead on a (potential) 
enstrophy flux.  Energy and enstrophy injection into this 
cascade is considered to take place at intermediate scales 
where hydrodynamic instabilities are most active - i.e., 
near the appropriate deformation radius in mesoscale and 
submesoscale eddy-rich models.  Leith (1996) and Fox-
Kemper and Menemenlis (2008) suggest and implement, 
respectively, a SGS closure for eddy-rich ocean models 
based on the enstrophy cascade in 2d turbulence.  It is 
important to note differences from the Smagorinsky-
school closures: the flow-awareness differs and the scale-
awareness differs.  The Leith viscosity is proportional to the 
vorticity gradient instead of the deformation rate, so it is 
one differential order higher.  The Leith harmonic viscosity 
depends on the third power of gridscale instead of the first 
(Willebrand et al., 2001) or second (Smagorinsky, 1963); 
and similarly is one to two powers of gridscale larger for 
biharmonic viscosity (Fox-Kemper and Menemenlis, 2008).

The differences in flow-awareness and scale-awareness 
make the Leith scaling more scale selective than the 

Figure 1:  Estimate of the effective nominal horizontal resolution of 
ocean model components for primary baseline and climate change 
scenarios as reported in the IPCC reports by year of publication.  
Exponential fits to the median, finest-resolution, and a Moore’s 
(1965) law estimate are shown; the doubling of resolution occurs 
every 10.2, 6.9, and 6 years, respectively. Standards for “resolving” 
turbulence types and the first baroclinic deformation radius range 
(Chelton et al. 1998) are also indicated.  Sixth assessment report 
(AR6) high-resolution estimates based on present prototypes are 
indicated, but not fitted.

scale.  If there is a separation, then closures depend only 
parametrically on flow variables and are independent of 
fine adjustments to the gridscale, and thus the closures are 
called parameterisations.  If there is no scale separation 
between the resolved flow and the largest eddy scale, then 
the model falls into the category of Large Eddy Simulations 
(LES).  Ocean models where the gridscale lies between the 
largest mesoscale eddy scale and the smallest can be called 
Mesoscale Ocean Large Eddy Simulations (MOLES).  For 
example, complete resolution of baroclinic instability on 

Fox-Kemper et al  2014



A Spread of Ocean/Climate Ensembles

 Perturbed Physics: perturbations in 

parameters or parametrizations with 

the same model

 Ensemble of opportunities: e.g., 

models participating in CMIP using 

different model structures but same 

protocol in terms of scenarios 

 Perturbed Initial State: 

perturbations in initial conditions 

or initial background state 

 

 

§ Explore different ensembles as a function of timescales, processes & methods



A Spread of Ensembles: (C)MIP 
§ Ensemble of opportunity:  Climatology (multidecadal and beyond) 

§ Observations: ~18Sv +/- 6 Sv;      

CMIP5: ~20 +/- 6 Sv with 23 models

0

10

20

30

40
a) AMOC (Control)

Ψ
AM

O
C

 [S
v]

AB
C
D

0

50

100

150

200

250
b) ACC (Control)

Ψ
AC

C
 [S

v]

A
BCD

−6

−4

−2

0

2
c) AMOC (1%CO2)

∆Ψ
AM

O
C

 [S
v]

−5

0

5

10

15

20
d) ACC (1%CO2)

∆Ψ
AC

C
 [S

v]

−90 −60 −30 0 30 60 90

0

1

2

3

4

e) Zonal Ocean Heat Uptake at 2xCO2

Latitude

O
H

U
 [1

0
22

J]

Global Atlantic Pacific Southern

0

0.2

0.4

0.6

0.8

1

1.2
f) Ocean Heat Uptake at 2xCO2

O
H

U
 [1

0
24

J]

MITgcm Ensemble
(individual air-sea fluxes
model parameters fixed)

CMIP5 Ensemble

κ
ν
 [cm 2/s]

κ
GM

 [m2/s]

1                                 10

MITgcm Ensemble
(ensemble-mean air-sea fluxes)

0                             1600

MITgcm Ensemble
(ensemble-mean air-sea fluxes)

BA C D
MITgcm Ensemble

(Heat and Freshwater Fluxes
from Reanalysis Products)

MITgcm Ensemble
(individual air-sea fluxes
model parameters fixed

bias from relaxation terms removed)

 Atlantic Meridional Overturning Circulation 

Sv= 106 m3/s



Brankart 2013

§ Nonlinear equation of state for density

A Spread of Ensembles: Stochastic Perturbations

large-scale horizontal density field. The objective is to propose a
simple (empirically specified) stochastic paramete rization of these 
uncertainties (in Section 3), and to evaluate the impact that this 
parameterizati on may have on the ocean circulation (in Section 4),
as simulated by a low resolution global model configuration (de-
scribed in Section 2).

2. A low resolution global ocean model 

The purpose of this section is to present the NEMO primitive 
equation model and to describe the ORCA2 low resolution global 
ocean configuration.

2.1. The NEMO primitive equation model 

The ocean general circulation model that is used in this study is
the NEMO model (Nucleus for European Modelling of the Ocean),
as described in Madec (2008). The model approximat es the ocean 
circulation by the primitive equation s:

! the momentum balance equation:

@Uh

@t
¼ # ðr% UÞ % Uþ 1

2
rðU2Þ

! "
# f k% Uh #

1
q0
rhp

þ DU þ FU ð1Þ

where t is time; k, the local upward unit vector; U, the velocity vec- 
tor (Uh is the horizont al component, orthogonal to k, and w, the ver- 
tical veloci ty); p is pressure; q0, a reference density; and f ¼ 2X% k,
the Coriolis accelerat ion (where X is the Earth angular velocity);
! the hydrostatic equilibriu m equation:

@p
@z
¼ #qg ð2Þ

where z is the vertical coordinat e (in the direction of k); q is in situ 
density; and g, gravitatio nal accelerat ion;
! the incompress ibility equation:

r ( U ¼ 0 ð3Þ

! the heat and salt conservation equations:

@T
@t
¼ #r ( ðTUÞ þ DT þ FT ð4Þ

@S
@t
¼ #r ( ðSUÞ þ DS þ FS ð5Þ

where T is potential temperat ure and S, salinity;
! the equation of state:

q ¼ q T; S;p0ðzÞ½ * ð6Þ

where p0ðzÞ ¼ q0gz is the reference pressure as a function of depth.

In these equation s, DU ;DT and DS represent the parameterization of
small-scale physics for momentum, temperature and salinity, and 
FU ; FT and FS are surface forcing terms.

These equations are complemen ted by boundary conditions,
which are applied at the ocean bottom and at the interface with 
the atmosphere . Kinematic conditions consist in a ‘no flow’ condi- 
tion across the ocean bottom:

w ¼ #Uh (rhH ð7Þ

where H is ocean depth, and a progno stic equation for the sea sur- 
face height g:

@g
@t
¼ #r ( ðH þ gÞUh

# $
þ P# E ð8Þ

where Uh is the vertical average of horizont al velocity; P, precipit a-
tion; and E, evaporation. Dynamic boundar y conditio ns parameter -
ize the exchange of momentu m and heat across the bottom and 
surface boundaries. Since they depend on the paramete rization 
used for DU and DT , they will be describ ed later in Section 2.2.

From Eqs. (2) and (8), it results that the horizontal pressure gra- 
dient rhp in Eq. (1) is given by:

rhp ¼ rhps þ
Z f¼0

f¼z
grhqdf ð9Þ

where ps ¼ qsgg is the surface pressure gradient, and qs is surface 
density . Thus the horizont al pressure gradient depends on the ther- 
mohaline structure of the ocean (T and S) throug h the equation of
state in Eq. (6). In realistic application s of NEMO, the equation of
state is the standard empirical equation defined by the Joint Panel 
on Oceanograp hic Tables and Standard s (UNESCO, 1983 ), in a ver- 
sion that has been reformulate d by Jackett and McDougall (1995)
(by a modification of the coefficients of the K polynom ial in the 
equation below), to allow direct computa tion of in situ density from 
potenti al temperatur e (rather than in situ temperat ure):

qðT; S; pÞ ¼ qðT; S;0Þ
1# p=KðT; S;pÞ

ð10Þ

where qðT; S;0Þ is a 15-term polynom ial in T and S; and KðT; S;pÞ, a
26-term polynomi al in T; S and p. One of the main characterist ics of
the seawate r equation of state is thus to be quite nonlinea r (see
Fig. 1). In addition , it must be remembe red that, in principle , it is
only valid for a fluid parcel in thermo dynamic equilibrium .

2.2. The ORCA2 configuration

The NEMO configuration used in this study is the ORCA2 config-
uration, as described in Madec and Imbard (1996). It is a low res- 
olution configuration, which is provided with the model code 
(<http://ww w.nemo-ocean .eu/> ), and which is used here exactly 
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Fig. 1. Sea water equation of state (thick solid line) for joint temperature and 
salinity variations between 2 !C and 24 !C (bottom axis) and 32 and 37:5 (top axis)
respectively. A typical distribution of unresolved temperature and salinity fluctu-
ations is represented by the grey histogram, which superposes two Gaussian 
distributions with means at T = 8 !C, S ¼ 33:5 and T = 16 !C, S ¼ 35:5, and identical 
standard deviations: rT = 2.5 !C, rS ¼ 0:625. The density at point A is computed by
applying the equation of state to the mean of the distribution: T = 12 !C and 
S ¼ 34:5, whereas the density at point B takes into account the distribution of
unresolved temperature and salinity fluctuations. Points B1 and B2 show that the 
same density can be obtained as the mean of two densities obtained from opposite 
temperature and salinity fluctuations.
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large-scale horizontal density field. The objective is to propose a
simple (empirically specified) stochastic paramete rization of these 
uncertainties (in Section 3), and to evaluate the impact that this 
parameterizati on may have on the ocean circulation (in Section 4),
as simulated by a low resolution global model configuration (de-
scribed in Section 2).

2. A low resolution global ocean model 

The purpose of this section is to present the NEMO primitive 
equation model and to describe the ORCA2 low resolution global 
ocean configuration.

2.1. The NEMO primitive equation model 

The ocean general circulation model that is used in this study is
the NEMO model (Nucleus for European Modelling of the Ocean),
as described in Madec (2008). The model approximat es the ocean 
circulation by the primitive equation s:

! the momentum balance equation:

@Uh

@t
¼ # ðr% UÞ % Uþ 1

2
rðU2Þ

! "
# f k% Uh #

1
q0
rhp

þ DU þ FU ð1Þ

where t is time; k, the local upward unit vector; U, the velocity vec- 
tor (Uh is the horizont al component, orthogonal to k, and w, the ver- 
tical veloci ty); p is pressure; q0, a reference density; and f ¼ 2X% k,
the Coriolis accelerat ion (where X is the Earth angular velocity);
! the hydrostatic equilibriu m equation:

@p
@z
¼ #qg ð2Þ

where z is the vertical coordinat e (in the direction of k); q is in situ 
density; and g, gravitatio nal accelerat ion;
! the incompress ibility equation:

r ( U ¼ 0 ð3Þ

! the heat and salt conservation equations:

@T
@t
¼ #r ( ðTUÞ þ DT þ FT ð4Þ

@S
@t
¼ #r ( ðSUÞ þ DS þ FS ð5Þ

where T is potential temperat ure and S, salinity;
! the equation of state:

q ¼ q T; S;p0ðzÞ½ * ð6Þ

where p0ðzÞ ¼ q0gz is the reference pressure as a function of depth.

In these equation s, DU ;DT and DS represent the parameterization of
small-scale physics for momentum, temperature and salinity, and 
FU ; FT and FS are surface forcing terms.

These equations are complemen ted by boundary conditions,
which are applied at the ocean bottom and at the interface with 
the atmosphere . Kinematic conditions consist in a ‘no flow’ condi- 
tion across the ocean bottom:

w ¼ #Uh (rhH ð7Þ

where H is ocean depth, and a progno stic equation for the sea sur- 
face height g:

@g
@t
¼ #r ( ðH þ gÞUh

# $
þ P# E ð8Þ

where Uh is the vertical average of horizont al velocity; P, precipit a-
tion; and E, evaporation. Dynamic boundar y conditio ns parameter -
ize the exchange of momentu m and heat across the bottom and 
surface boundaries. Since they depend on the paramete rization 
used for DU and DT , they will be describ ed later in Section 2.2.

From Eqs. (2) and (8), it results that the horizontal pressure gra- 
dient rhp in Eq. (1) is given by:

rhp ¼ rhps þ
Z f¼0

f¼z
grhqdf ð9Þ

where ps ¼ qsgg is the surface pressure gradient, and qs is surface 
density . Thus the horizont al pressure gradient depends on the ther- 
mohaline structure of the ocean (T and S) throug h the equation of
state in Eq. (6). In realistic application s of NEMO, the equation of
state is the standard empirical equation defined by the Joint Panel 
on Oceanograp hic Tables and Standard s (UNESCO, 1983 ), in a ver- 
sion that has been reformulate d by Jackett and McDougall (1995)
(by a modification of the coefficients of the K polynom ial in the 
equation below), to allow direct computa tion of in situ density from 
potenti al temperatur e (rather than in situ temperat ure):

qðT; S; pÞ ¼ qðT; S;0Þ
1# p=KðT; S;pÞ

ð10Þ

where qðT; S;0Þ is a 15-term polynom ial in T and S; and KðT; S;pÞ, a
26-term polynomi al in T; S and p. One of the main characterist ics of
the seawate r equation of state is thus to be quite nonlinea r (see
Fig. 1). In addition , it must be remembe red that, in principle , it is
only valid for a fluid parcel in thermo dynamic equilibrium .

2.2. The ORCA2 configuration

The NEMO configuration used in this study is the ORCA2 config-
uration, as described in Madec and Imbard (1996). It is a low res- 
olution configuration, which is provided with the model code 
(<http://ww w.nemo-ocean .eu/> ), and which is used here exactly 
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Fig. 1. Sea water equation of state (thick solid line) for joint temperature and 
salinity variations between 2 !C and 24 !C (bottom axis) and 32 and 37:5 (top axis)
respectively. A typical distribution of unresolved temperature and salinity fluctu-
ations is represented by the grey histogram, which superposes two Gaussian 
distributions with means at T = 8 !C, S ¼ 33:5 and T = 16 !C, S ¼ 35:5, and identical 
standard deviations: rT = 2.5 !C, rS ¼ 0:625. The density at point A is computed by
applying the equation of state to the mean of the distribution: T = 12 !C and 
S ¼ 34:5, whereas the density at point B takes into account the distribution of
unresolved temperature and salinity fluctuations. Points B1 and B2 show that the 
same density can be obtained as the mean of two densities obtained from opposite 
temperature and salinity fluctuations.
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ferent temperature and salinity (and which leads to the sinking of
the resulting denser water). In a similar way, if density is computed 
from average (large-scale) temperature and salinity (as in all stan- 
dard ocean models), then it is quite systematically larger than the 
(correct) average density (which should be used in the large-scal e
thermal wind Eq. (9)). This is like a spurious ‘artificial cabbelling’
that should be avoided to write consistent equations for the 
large-scale flow. To quantify the magnitud e of this effect, the first
thing to do is thus to introduce a mathematical description of the 
averaging (or filtering) operator extracting the large-scale compo- 
nent of the ocean circulation, and then to compute the density mis- 
fit that is produced if this filtering operator is applied after rather 
than before the equation of state.
(a) Impact of averaging temperat ure and salinity on density . If wðx;x0Þ
denotes the averaging operator (where x and x0 are spatial coordi- 
nates), and if T 0ðxÞ; S0ðxÞ are the unresolved fluctuations of potential 
temperature and salinity, then the large-scale density qðxÞ can be
written:

qðxÞ ¼
Z

q Tðx0Þ þ T 0ðx0Þ; Sðx0Þ þ S0ðx0Þ; p0ðzÞ
! "

wðx; x0Þdx0 ð11Þ

This corresp onds to replacing the assumpt ion that the large-scal e
fluid parcel is in equilibrium (which is made in Eq. (6) by applying 
the equation of state to the large scale) by the assumpt ion of local 
equilibrium (by applying the equation of state locally). This is
clearly still an assumpt ion, but it is the standard assumption that 
is made to apply equilibrium thermodynam ics to fluid mechan ics.
Furthermor e, it must be noted that the two assumpt ions would pro- 
duce the same result if the equation of state was linear, since by
definition of the averaging operator:
Z

Tðx0Þ þ T 0ðx0Þ
! "

wðx; x0Þdx0 ¼ TðxÞ and
Z

Sðx0Þ þ S0ðx0Þ
! "

wðx;x0Þdx0 ¼ SðxÞ ð12Þ

The spatial integral in Eq. (11) can be transformed into an inte- 
gral on temperature and salinity fluctuations (considered as ran- 
dom variables: dT and dS):

qðxÞ ¼
Z

q TðxÞ þ dT; SðxÞ þ dS;p0ðzÞ½ &/ðdT; dS; xÞddT ddS ð13Þ

where /ðdT; dS; xÞ is the distribution of temperatu re and salinity 
fluctuations (due to unresolved scales) corresp onding to location x:

/ðdT; dS; xÞ ¼
Z

d T 0ðx0Þ ' dT; S0ðx0Þ ' dS
! "

wðx;x0Þdx0 ð14Þ

With the Dirac delta function d, this last expression cumulates all 
temperatu re and salinity fluctuations (T 0ðx0Þ and S0ðx0Þ in the neigh- 
bourhood of x) that are equal to dT and dS. To each of them, it gives 
the weight wðx;x0Þ depending on its spatial location with respect to
x, so that the distribution /ðdT; dS; xÞ integr ates to 1 for every spec- 
ified x [just as the averagin g operator wðx; x0Þ]. Furtherm ore, as a di- 
rect conseque nce of Eq. (12), the mean of the distrib ution is dT ¼ 0
and dS ¼ 0.

To illustrate the effect that the distribution /ðdT; dS; xÞ of unre- 
solved temperature and salinity fluctuations may have on the 
large-scale density, Fig. 1 shows the example of a temperature 
and salinity distribution typical of the Gulf Stream front (grey his- 
togram along the T-axis in abcsissa). Along the front, two kinds of
surface waters are assumed simultaneou sly present in the unre- 
solved scales: cold and fresh waters on the one hand (with a mean 
at T ¼ 8 !C, S ¼ 33:5), and warm and salty waters on the other hand 
(with a mean at T ¼ 16 !C, S ¼ 35:5), both assumed with Gaussian 
temperature and salinity fluctuations. The thick solid curve shows 
the equilibrium equation of state (at the ocean surface: z ¼ 0), as
given by Eq. (10), which produces a maximum density close to

T ¼ 12 !C and S ¼ 34:5. The density at point A is computed by
applying the equation of state to the large-scale temperature (i.e.
the mean of the distribution: T ¼ 12 !C and S ¼ 34:5) as in Eq.
(6): qA ¼ 1026:20 kg/m 3, and the density at point B is computed 
by taking into account the distribution of unresolved temperature 
and salinity fluctuations (given by /ðdT; dS; xÞ) using Eq. (13):
qB ¼ 1026:08 kg/m 3. In realistic conditions, the curvature of the 
equation of state is most often negative, in which case the differ- 
ence Dq ¼ qB ' qA is systematically negative, and can only ap- 
proach zero if the equation of state is close to linear in the range 
of the fluctuations. In this example case, the difference 
Dq ¼ '0:12 kg/m 3 is far from negligible, but it is certainly impor- 
tant to get a better idea of the importance of this effect in the real 
ocean.
(b) Estimation of Dq from reanalysis data. For that purpose, it is nec- 
essary to use a gridded ocean data set with both temperat ure and 
salinity at sufficient horizontal resolution. One possible product is
the GLORYS global ocean reanalysis dataset (Ferry et al., 2010 ),
which is produced by Mercator-O cean by assimilating all available 
ocean observations (such as satellite altimetri c data, sea surface 
temperat ure, ARGO floats,. . .) in a 1=4( resolution global configura-
tion of the NEMO model (the ORCA025 configuration, as developed 
by The DRAKKAR Group (2007)). Thus the smaller wavelength that 
can be represented by the ORCA2 grid corresponds to about 16 grid 
points in the GLORYS reanalysis, which can be expected to contain 
a significant part of the signal that is not resolved by the ORCA2 
configuration. A lower bound for jDqj can thus be obtained by com- 
puting qA from the 16) 16 block-mean potential temperature and 
salinity, and qB as the 16) 16 block-mean density. In the above 
formalism, this corresponds to using the block-mean operator as
a proxy for the averaging operator in Eq. (11), which means iden- 
tifying the unresolv ed scales to all waveleng ths below two ORCA2 
grid points that are present in the GLORYS reanalysi s.

Fig. 2 shows the resulting estimate of Dq that is obtained (a) for 
the surface model layer on January 1, 2009 (top panel), (b) for the 
vertical profile at 47:5(W 42:6(N for the same date (bottom left pa- 
nel), and (c) for the 2009 surface time series at the same horizontal 
location (bottom right panel). What can be observed in this figure
is first that the effect of unresolved scales on the large-scale den- 
sity is mainly concentrated in the Western boundary currents 
and in the Antarctic circumpol ar current, because it is in these re- 
gions that the mesoscale activity is the most intense. The effect is
especiall y strong along the Northern edge of the Gulf Stream front,
because in addition to the intense mesoscale activity and the sharp 
temperat ure and salinity gradients, the equation of state produces 
a maximum density close to the middle of the current (as illus- 
trated in Fig. 1). Second, as a result of the vertical coherence of
the mesoscale temperature and salinity fluctuations, Dq is only 
smoothly varying with depth, first in the mixed layer (down to
200 m depth in the winter example of Fig. 2), and then slowly 
decreasing in the deep thermocline (down to about 1000 m depth).
In the Gulf Stream region, the vertical average of Dq over the first
1000 m can typically reach 0.1 kg/m 3 (corresponding to a pressure 
differenc e of about 0.1 m), which is thus far from being negligible.
Third, as illustrated by the time series in Fig. 2, Dq is fluctuating in
time in relation to the modification of the pattern of the unresolved 
scales (which mainly results, in Fig. 2, from the movement of
mesoscale eddies). In the horizontal map (top panel of Fig. 2), these 
fluctuations look smooth on the horizontal because Dq is shown at
the 1=4( resolution of the GLORYS reanalysis (using a boxcar filter).
If the resolution is degraded to the ORCA2 resolution, it can be ob- 
served, on the contrary, that these high-frequency fluctuations are 
mostly decorrelated from one ORCA2 grid point to the next. In
addition, the time series shows a seasonal cycle: jDqj is smaller 
during summer because temperature is higher, so that the nonlin- 
earity of the equation of state does not produce the same effect.
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§ Stochastically perturbed nonlinear equation of state: Climatology

 with stochastic perturbations
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8i ¼ 1; . . . ; p), then Dq is distributed like a chi-squar e distribution 
with p degrees of freedom (with a negative multiplica tive factor,
containing the factor 1=p). And the main charac teristics of the Dq
distribution are:

" the mean: Dq ¼ 1
2

@2q
@T2 DT2 þ 2 @2q

@T@S DTDSþ @2q
@S2 DS2

h i

" the standard deviation: rDq ¼
ffiffi
2
p

q
jDqj

" the mode: dDq ¼ 0 for p 6 2 and dDq ¼ p$2
p Dq for p P 2

Thus the mean density difference Dq does not depend on the 
number of degrees of freedom p in the temperature and salinity 
fluctuations, and the main effect of increasing p is to reduce the 
dispersion of Dq around the mean (since the standard deviation 
rDq decrease s as 1=

ffiffiffi
p
p

). Moreover, for p 6 2, the mode of the distri- 
bution is Dq ¼ 0, which means that small Dq remain very probable ,
and would appear quite often in the time series (inconsistently 
with Fig. 2). On the contrary, as the number of degrees of freedom 
in the fluctuations increases, the probabili ty that they are all close 
to zero (which is necessary for the mean square Dq to be close to

zero) becomes smaller and smaller, and the peak dDq gets closer 
to the mean Dq. (For p!1, the distribut ion even becomes asymp- 
totically Gaussian, with mean Dq and standard deviation rDq.) This 
correspond s to what happens in the real ocean: the more degrees 
of freedom in the unresolved scales (for every ORCA2 grid point),
the less probable it is that the effect of the fluctuations can almost 
totally disappear (i.e. Dq becoming close to zero). Hence, in the 
paramete rization of the stochastic processes, p is the parameter 
to tune to obtain the right dispersio n of Dq around the mean Dq
(as observed in Fig. 2).

(c) Density modification Dq in the model. Table 2 summari zes the 
statistical paramete rs that have been used to define the stochastic 
equation of state using Eqs. (15) to (18), and Fig. 4 shows the 
resulting density difference Dq that it produces in the ORCA2 sim- 
ulation (computed as the difference between Eqs. (15) and (6)). The 
three panels of Fig. 4 show the same three kinds of results that 
were obtained in Fig. 2 from the GLORYS reanalysis: (a) Dq in
the surface model layer for January (corresponding to the 25th year 
of the perpetua l ORCA2 simulation), (b) Dq for the vertical profile
at 47:5%W 42:6%N for the same date, and (c) Dq for the time series 
correspond ing to the same location and to the same year. What we
can conclude from the comparison between Figs. 2 and 4 is that the 
stochasti c parameterizati on of the equation of state is qualitatively 
able to reproduce (i) the right horizontal pattern for Dq, mainly 
concentr ated in the Western boundary currents and in the Antarc- 
tic circumpolar current (but the values are about two times larger),
(ii) a reasonable vertical structure for Dq (varying quite smoothly 
with depth, but with a sharper gradient between 200 and 500 m
depth), and (iii) a fluctuating time series (with a similar annual cy- 
cle but much larger high frequenc y fluctuations). Because of the 
simplicit y of the statistical model (in Table 2) and because of the 

Table 2
Statistical parameters defining the random walks in Eq. (17). A dependence with 
latitude (k) is introduced to avoid unrealistic effects and numerical instability in
tropical regions.

Number of random walks p ¼ 6
Horizontal standard deviation (i ¼ 1; . . . ;p) ‘x ¼ ‘y ¼ 4:2j sin kj grid points 
Vertical standard deviation (i ¼ 1; . . . ; p) ‘z ¼ j sin kj grid points 
Correlation timescale (i ¼ 1; . . . ; p) s ¼ 180 time steps 

Fig. 4. Density difference Dq produced by the stochastic parameterization (a) for the surface model layer on January 1, year 5 (top panel), (b) for the vertical profile at 48%W
43:2%N (the position of the black dot in the top panel) for the same date (bottom left panel), and (c) for the surface time series (corresponding to the 25th year of the perpetual 
simulation) at the same horizontal location (bottom right panel).
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§ Climatology: density difference between stochastic nonlinear equation of 

state and control in a coarse-resolution (2o) ocean-only model (NEMO)

A Spread of Ensembles: Stochastic Perturbations

 

 



A Spread of Ensembles: Eddy-permitting

§ Increased horizontal resolution, increased kinetic Energy and variance 

Kjellsson & Zanna 2017

 Gulf Stream

1o

1/4o

1/12o

Wavenumber



A Spread of Ensembles: Eddy-permitting + Stochastic I.P

§ OCCIPUT: Interannual hincasts with NEMO 1/4 horizontal resolution, ocean + 

sea-ice, 1960-2015, 50 members (~19 million CPU h.) driven by same atmospheric 

forcing (ERAi/DFS5.2)

•Motivation •OCCIΙλβ •Probabilistic approach •Interannual-to-multidecadal variability •Summary 6/14

OCCIΙλβ | 50× Eddy-permitting ocean/sea-ice hindcasts 1960-2015

50×members (1/4 ) driven by same atmospheric forcing (ERAi/DFS5.2)

one-member spin-up∼20 yrs

Initial perturbation strategy:

19
60

19
61

20
15

50× stochastic equation of state
applied for ONE year (Brankart et al 2013)

Ensemblemean

(→ forced variability)

Ensemble dispersion

(→ intrinsic variability)

Probability Density Function
evolving with time

! Ensemble-NEMO: Nmembers run simultaneously in one single executable,

! On-line ensemble statistics (could be re-injected directly in the on-going integration),

! 50×Synthetic obs datasets (e.g. ENACβ/ENΧEMBLE in-situ data, Jason2)

! ∼19 million CPU h. Full-time OCCIΙλβ engineer L. Bessières, +JM. Molines, JM. Brankart.
Journées GMMC, Toulon, Jun. 2016: The OCCIPUT Project stephanie.leroux@lgge.obs.ujf-grenoble.fr (MEOM/LGGE, Grenoble)

Sérazin et al 2017; Penduff et al 2015

20
15



• Perturbing subgrid parametrizations with multiplicative noise on 
seasonal timescales (Stochastically Perturbed Physics Tendencies - SPPT 
Buizza et al 1999): horizontal & vertical mixing, eddy diffusivity & viscosity; 

e.g.: 

12 Model basics

2.1 Primitive Equations

2.1.1 Vector Invariant Formulation

The ocean is a fluid that can be described to a good approximation by the primi-
tive equations, i.e. the Navier-Stokes equations along with a nonlinear equation of
state which couples the two active tracers (temperature and salinity) to the fluid ve-
locity, plus the following additional assumptions made from scale considerations :

(1) spherical earth approximation : the geopotential surfaces are assumed to
be spheres so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation : the ocean depth is neglected compared to the
earth’s radius

(3) turbulent closure hypothesis : the turbulent fluxes (which represent the ef-
fect of small scale processes on the large-scale) are expressed in terms of large-
scale features

(4) Boussinesq hypothesis : density variations are neglected except in their
contribution to the buoyancy force

(5) Hydrostatic hypothesis : the vertical momentum equation is reduced to a ba-
lance between the vertical pressure gradient and the buoyancy force (this removes
convective processes from the initial Navier-Stokes equations and so convective
processes must be parameterized instead)

(6) Incompressibility hypothesis : the three dimensional divergence of the ve-
locity vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale
motions, it is useful to choose an orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. tangent to the geopotential surfaces. Let us define the following variables :
U the vector velocity, U = Uh + w k (the subscript h denotes the local horizontal
vector, i.e. over the (i,j) plane), T the potential temperature, S the salinity, ⇢ the
in situ density. The vector invariant form of the primitive equations in the (i,j,k)
vector system provides the following six equations (namely the momentum ba-
lance, the hydrostatic equilibrium, the incompressibility equation, the heat and salt
conservation equations and an equation of state) :

@Uh

@t
= �



(r⇥U)⇥U +

1

2

r

�

U

2

�

�

h

� f k⇥Uh �
1

⇢o
rhp + D

U
+ F

U

(2.1a)

@p

@z
= �⇢ g (2.1b)

r · U = 0 (2.1c)

• Represent (1) structural (model parametrization) uncertainty; 

(2) increase the spread of the ensemble & variability; (3) 
potentially reducing biases?
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The ocean is a fluid that can be described to a good approximation by the primi-
tive equations, i.e. the Navier-Stokes equations along with a nonlinear equation of
state which couples the two active tracers (temperature and salinity) to the fluid ve-
locity, plus the following additional assumptions made from scale considerations :

(1) spherical earth approximation : the geopotential surfaces are assumed to
be spheres so that gravity (local vertical) is parallel to the earth’s radius

(2) thin-shell approximation : the ocean depth is neglected compared to the
earth’s radius

(3) turbulent closure hypothesis : the turbulent fluxes (which represent the ef-
fect of small scale processes on the large-scale) are expressed in terms of large-
scale features

(4) Boussinesq hypothesis : density variations are neglected except in their
contribution to the buoyancy force

(5) Hydrostatic hypothesis : the vertical momentum equation is reduced to a ba-
lance between the vertical pressure gradient and the buoyancy force (this removes
convective processes from the initial Navier-Stokes equations and so convective
processes must be parameterized instead)

(6) Incompressibility hypothesis : the three dimensional divergence of the ve-
locity vector is assumed to be zero.

Because the gravitational force is so dominant in the equations of large-scale
motions, it is useful to choose an orthogonal set of unit vectors (i,j,k) linked to the
earth such that k is the local upward vector and (i,j) are two vectors orthogonal to
k, i.e. tangent to the geopotential surfaces. Let us define the following variables :
U the vector velocity, U = Uh + w k (the subscript h denotes the local horizontal
vector, i.e. over the (i,j) plane), T the potential temperature, S the salinity, ⇢ the
in situ density. The vector invariant form of the primitive equations in the (i,j,k)
vector system provides the following six equations (namely the momentum ba-
lance, the hydrostatic equilibrium, the incompressibility equation, the heat and salt
conservation equations and an equation of state) :
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A Spread of Ensembles: Stochastic Perturbations
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(b) North Atlantic Sub−tropics
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(e) North Atlantic Sub−tropics
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(f) Southern Ocean

Ocean Heat Content Variance

Andrejczuk, Cooper, Juricke, Palmer, Weisheimer & Zanna, MWR, 2016;  

Juricke, Palmer, Zanna, J. Clim. 2017.  

 See also Brankart et al 2017 for a NEMO-SPPT; Grooms 2017 for stochastic eddy Gent-

McWilliams.

§ Large spread in model heat content on seasonal timescale using SPPT in 

coarse-resolution 1o coupled model

A Spread of Ensembles: Stochastic Perturbations



A Spread of Ensembles: Regional (inc. nested) Models
§ Regional models initialized, and perturbed with stochastic forcing 

weighted by observation-based (EDA or observations) variability

Oceanography  Vol. 19, No. 1, Mar. 200692

Figure 7. Chlorophyll a (Chl) mean and uncertainties at 20-m depth in the Mass Bay region on September 2, 1998, as hindcast by 600 Error Subspace Statis-
tical Estimation (ESSE) ensemble members. ESSE was initialized on August 25, 1998. (Top left/right) Mean/Error Standard Deviation of Chl. (Bottom) Eight 
PDF estimates (normalized histograms, numbered 1 to 8) corresponding to the eight marked locations on the horizontal maps. Bars on the histograms are 
colored according to the center Chl value. Th e minimum, mean, standard deviation, and maximum values are given on each histogram (illustration by R.G. 
Hero, University of California, Santa Cruz).

Oceanography  Vol. 19, No. 1, Mar. 200692

Lermusiaux et al, 2006 



A Spread of Ensembles

§ Many models with different parametrizations, different resolutions 

§ Many ways to represent model errors: stochastic physics, perturbed 

parameters, multi-models

§ Do we learn anything from these experiments? 

§ Better representation of uncertainty on a range of timescales but 



§ CMIP: many models, many parameters & parametrizations and several 

components (ocean, atmosphere, ice, land …)

Understanding the “uncertainty”: CMIP

Huber & Zanna 2017
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§ Designed an ocean-only ensemble: 1) forced by CMIP fluxes and 2) with 

perturbed physics ensemble
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components (ocean, atmosphere, ice, land …)
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➡  important implications for thermometric sea level predictions

air-sea 
fluxes

vertical 
mixing all

Understanding the “uncertainty”: CMIP

§ Ocean-only 2xCO2 forced with CMIP fluxes, and perturbed 
parameters

Huber & Zanna 2017
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(f) Southern Ocean

Ocean Heat Content Variance

Andrejczuk, Cooper, Juricke, Palmer, Weisheimer & Zanna, MWR, 2016;  

Juricke, Palmer, Zanna, J. Clim. 2017.  

 See also Brankart et al 2017 for a NEMO-SPPT; Grooms 2017 for stochastic eddy Gent-

McWilliams.

§ Large spread in model heat content on seasonal timescale using SPPT but 

often small compared to atmospheric variability in coarse-resolution models

Understanding the “uncertainty”: Stochastic Physics



Understanding the “uncertainty”: Stochastic Physics
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FIG. 6. Standard deviation of linearly detrended annual mean zonally averaged streamfunction (Sv) for Yeuler

in the Pacific basin for a) the ORAP5 reanalysis (1979-2004), b) the ORAS4 reanalysis (1960-2004), and c) the

reference simulation REF (105 years). Bottom row: Relative change in variance of annual mean zonally aver-

aged streamfunction between d) ORAP5, e) ORAS4, f) the stochastic simulation STO and the reference REF

(normalized by the variance of REF). Calculated from monthly mean values of the velocity fields. Interpolated

to the grid of REF. Mind the non-linear colourbars.
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in the Pacific basin for a) the ORAP5 reanalysis (1979-2004), b) the ORAS4 reanalysis (1960-2004), and c) the

reference simulation REF (105 years). Bottom row: Relative change in variance of annual mean zonally aver-

aged streamfunction between d) ORAP5, e) ORAS4, f) the stochastic simulation STO and the reference REF

(normalized by the variance of REF). Calculated from monthly mean values of the velocity fields. Interpolated

to the grid of REF. Mind the non-linear colourbars.
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FIG. 6. Standard deviation of linearly detrended annual mean zonally averaged streamfunction (Sv) for Yeuler

in the Pacific basin for a) the ORAP5 reanalysis (1979-2004), b) the ORAS4 reanalysis (1960-2004), and c) the

reference simulation REF (105 years). Bottom row: Relative change in variance of annual mean zonally aver-

aged streamfunction between d) ORAP5, e) ORAS4, f) the stochastic simulation STO and the reference REF

(normalized by the variance of REF). Calculated from monthly mean values of the velocity fields. Interpolated

to the grid of REF. Mind the non-linear colourbars.
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FIG. 6. Standard deviation of linearly detrended annual mean zonally averaged streamfunction (Sv) for Yeuler

in the Pacific basin for a) the ORAP5 reanalysis (1979-2004), b) the ORAS4 reanalysis (1960-2004), and c) the

reference simulation REF (105 years). Bottom row: Relative change in variance of annual mean zonally aver-

aged streamfunction between d) ORAP5, e) ORAS4, f) the stochastic simulation STO and the reference REF

(normalized by the variance of REF). Calculated from monthly mean values of the velocity fields. Interpolated

to the grid of REF. Mind the non-linear colourbars.
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Juricke, Palmer, Zanna J. Clim. 2017

§ Impact on low-frequency variability at coarse-resolution 1o due to 
eddies
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Interannual timescale | How chaotic is AMOC variability?

At all latitudes:
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Time-Std of the ensemble-mean: forced variability.

Ensemble-Std (averaged over 1960-1999): intrinsic variability

—Distribution of the 50 individual total Time-Std (mean, min,
max, q25, q75): total variability.

Journées GMMC, Toulon, Jun. 2016: The OCCIPUT Project stephanie.leroux@lgge.obs.ujf-grenoble.fr (MEOM/LGGE, Grenoble)
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—Distribution of the 50 individual total Time-Std (mean, min,
max, q25, q75): total variability.

Journées GMMC, Toulon, Jun. 2016: The OCCIPUT Project stephanie.leroux@lgge.obs.ujf-grenoble.fr (MEOM/LGGE, Grenoble)

§ Atlantic MOC interannual variability at eddy-
permitting (1/4) resolution

Understanding the “uncertainty”: hindcasts + stochastic

•Motivation •OCCIΙλβ •Probabilistic approach •Interannual-to-multidecadal variability •Summary 6/14

OCCIΙλβ | 50× Eddy-permitting ocean/sea-ice hindcasts 1960-2015

50×members (1/4 ) driven by same atmospheric forcing (ERAi/DFS5.2)

one-member spin-up∼20 yrs

Initial perturbation strategy:

19
60

19
61

20
15

50× stochastic equation of state
applied for ONE year (Brankart et al 2013)

Ensemblemean

(→ forced variability)

Ensemble dispersion

(→ intrinsic variability)

Probability Density Function
evolving with time

! Ensemble-NEMO: Nmembers run simultaneously in one single executable,

! On-line ensemble statistics (could be re-injected directly in the on-going integration),

! 50×Synthetic obs datasets (e.g. ENACβ/ENΧEMBLE in-situ data, Jason2)

! ∼19 million CPU h. Full-time OCCIΙλβ engineer L. Bessières, +JM. Molines, JM. Brankart.
Journées GMMC, Toulon, Jun. 2016: The OCCIPUT Project stephanie.leroux@lgge.obs.ujf-grenoble.fr (MEOM/LGGE, Grenoble)Sérazin et al 2017; Penduff et al 2015

§ Influence is stronger at mid-latitudes, where ocean 

eddy energy is strongest & where differences in density 

perturbations are largest too. 



Lessons:



Lessons: 1. Importance of Air-sea fluxes

 A strong influence of the air-sea 

coupling on all timescales. 

Important for  

§ Meridional Overturning Circulation 

(figs driven by CMIP5 fluxes) 

§ Heat content change 

§ Oceans feedback onto the 

atmosphere  
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§ Need for improvements in parametrizations of air-sea fluxes and 

representation of uncertainty  

§ All parametrizations are simple bulk formulae -  new approaches combining 

upper ocean processes & air-sea interaction are needed 

§ Representation of uncertainty: one preliminary approach based on SPPT in 

a coarse resolution model (Williams 2010), more research is required 

Lessons: 1. Importance of Air-sea fluxes

Net upward water flux (anomaly)
mm/day

(Williams 2010)

 Anomaly in net upward water flux (mm/day)

Williams 2010



Lessons: 2. Eddies

 Eddies impact the mean & variability on all timescales especially in mid-

latitudes: e.g.,  

§ Stratification in Southern Ocean and heat uptake 

§ Variability in overturning circulation in the North Atlantic

§ Eddy mixing is parametrized using a simple representation of baroclinic 

instability (via Gent-McWilliams) and turbulent kinetic energy budgets

§ SPPT-like representation of uncertainty for mixing shows mixed results  

§ Improvements should include  

 - perturbations derived from observations/EDA  

 - test in eddy permitting models where the model is less dissipative

§ Many processes such as energy backscatter are not currently 

represented in ocean models; need to develop diverse parametrization
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Porta Mana & Zanna, 2014;  Zanna et al, Ocean Modelling, 2017

§ Eddy permitting: energy backscatter using non-Newtonian fluid tensors

Lessons: 2. Eddies at eddy permitting resolution



Concluding remarks 

§ New era: Increased computational resources but far for resolving all 

important processes 

§ Need (diverse) parametrizations, especially focusing on upper ocean & 

interaction with the atmosphere  

§ Better two-way links between theory/idealised modelling & 

implementation in state-of-the-art models 

§ Representation of model uncertainty should link the physics of the 

model to the observed physics (scaling perturbations using EDA)   

§ Linking short to long timescales when thinking about ocean uncertainty


