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Summary

To generate a reliable ensemble it is important to have
consistency between initial conditions and model error

This can be obtained by using an Ensemble Data
Assimilation (EDA) system

We rely on the fact that a reliable prior ensemble and a
set of reliable perturbed observations can be combined
to give a reliable analysis ensemble.

This requires the same model error representation in
EDA and EPS (Ensemble Prediction System)
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Ensembles

Define the truth state x; as the real state of the
atmosphere averaged to the model grid.

The true evolution is now stochastic, as it depends
on information missing from X+

The truth x; should be statistically indistinguishable
from a randomly chosen ensemble member at any
time — reliability

Observations measure (imperfectly) a single
realisation of this stochastic model.




EDA EPS

Met Office The prior ensemble and Use an ensemble
observation ensemble data assimilation
should be reliable. system to represent

initial uncertainty.
The analysis ensemble is

constructed by combining Use observations
random prior members with to estimate model
random choices of errors.

perturbed observations.

Then the analysis ensemble
will be reliable.

The model error needs to be treated in the same
way throughout the data assimilation stage (EDA)
and the subsequent forecast step (EPS).
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Ensembles quality

There are two important ensemble properties:

Reliability: the truth is statistically indistinguishable
from a randomly chosen ensemble member at
any time (measured by comparing the ensemble
spread and the RMSE of the ensemble mean at
all lead times)

Accuracy: the error in the ensemble mean should be
as small as possible (measured by improving the
RMSE of the ensemble mean at all lead times)
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calibration
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Choice of model error

We can evolve the prior pdf using the stochastic model:
dx = F(x)dt + dwW

where F is the deterministic model and dW is the stochastic
term with covariance Q (which includes the model error).

The statistics of dW can be characterised by using
observations (and making stationary assumption) or
alternatively using stochastic schemes that simulate model
error within the model itself.

The latter methods are widely used but they only
represent specific sources of errors.

Using DA methods allow to exploit all available
observations (taking into account their observation
errors) to estimate model errors which represent all
sources of errors.
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Model error estimation using
DA methods

Data assimilation methods require a prior pdf.

First step: use cycled deterministic data assimilation to
estimate the model error (calibration step):

o Since observations measure only a single realisation of the truth
at each time, the statistics of model error can only be inferred by
accumulation over a large number of cases.

o Calculate statistics from archive - assuming stationary statistics
o This works if there are sufficient observations available (good
enough in the atmosphere; not clear in the ocean)

Calibration step:

1. Generate an archive of analysis increments (with stationary
statistics);
2. Use same model that will be used in the EDA.
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Assuming that the truth state evolution is given by:

X; = M;(X;_,) +n;

We use a reduced version of the cost function from
Tréemolet (2007) :

20 =220 QM+ Y (H(x) -y RA(H (x)-y,)
where:

n=QH"(R+HQH")"(H(x,)-Y)

where H includes the evolution of the deterministic model
from the times the model error are added up to the
observation times.
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Alternative DA based approaches
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Q can also be inferred from a standard weak-constraint
data assimilation cycle which calculates both a
background and a model error increment.

Alternative DA method to derive Q: diagnose model
error statistics using weak-constraint data assimilation
(extension of Desroziers method - Bowler 2017, QJ).

Assumption of uncorrelated errors:
o background and observation errors - uncorrelated
o background and model errors - correlated
o model errors are correlated in time

We therefore can not reliably estimate Q in a realistic
case. SO we propose to use the analysis increments
from the weak-constraint data assimilation calculated
In the calibration step.
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Implementation In
an EDA system:

- EDA set-up
- random assumption of
analysis increments
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Ensemble DA set-up

Met Office Second step: use the model error statistics to generate
a stochastic forcing term in an EDA system:

o Random analysis increments drawn from an archive are used
to force each member of the ensemble forecast.

o Minimise error of ensemble mean by using the best available
deterministic model in the calibration step.

Ensemble DA system:

1. Use an ensemble of 10 independent 4dVars with perturbed
observations and SSTs;
2. Draw every 6 hours random analysis increments from the

archive;

3. Add at each time step over a window of 6 hours (time-window
of DA system) perturbations consistent with the statistics of
the analysis increments, over the overall period of forecast

integration.

Model — Met Office N320L70 UM, i.e. 40km horizontal
resolution and 70 levels (80 km model top).
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W’ Ensemble of 4D-Vars using analysis

Met Office NEENERISED forcmg term

Calibration Step

Take a large sample of the analysis
y increments: X, = X - x°

Ensemble of 4D-Vars using analysis increment statistics as model error

XP + gP X0 + gP X .is a random sample drawn from
the analysis increments statistics

b b b b
Xb + Gb - -X + 0 - -X + 0
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W’ As reanalysis ...

Forecast

Corrected
forecast
after event
occurred

} a

Time

a
A 4

Assimilation Window

If the can be considered as a
random draw from an archive with stationary statistics,
a reanalysis trajectory will be statistically
indistinguishable from a random realisation of the
model with the stochastic forcing.
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Random assumption of analysis
Increments (U@850hPa)

To test this assumption, we compare the T+6 hours
ensemble spread with the RMSE of the ensemble
mean measured against a random analysis member
as the truth (Bowler et al. 2015).

Met Office

NH 1.98 1.93 2.40+/-1.87
Tropics 2.09 2.15 -2.42+/-1.67
SH 2.67 2.74 -2.68+/-2.02

+/- indicates 95% confidence interval.

So difference between spread and RMSE are not
statistically different from zero.

Thus If the analysis ensemble is reliable, the prior
ensemble will be reliable at the next cycle.
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Performance at
longer lead times:

- ensemble spread skill
- deterministic verification
of ‘climate’ integration
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Performance in longer forecasts
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We look at the performance of the ensemble
prediction system (EPS) at longer-range
forecasts using the spread-skill verification:

ensemble spread versus RMSE of ensemble
mean.

We also look at the performance in ’
Integrations verified against

In the latter, we expect results to match Met Office
reanalyses and not ERA-interim reanalysis
(differences in observation use, difference in
background error covariance modelling, etc).
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RMSE versus spread
at longer lead times
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Ensemble mean versus
deterministic RMSE
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10 years average vs ERA-Interim

height at 500 hPa - jja
Met Office
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~~— 10 years average vs ERA-Interim
edll Upper tropospheric humidity - jja
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a) Upper Troposheric Humidity for jja b) Upper Troposheric Humidity for j
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Comparison with
stochastic schemes|
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Stochastic schemes

There are various stochastic scheme to simulate the
model error within the model itself.

Operational MOGREPS uses:
»Random perturbations to physical parameters (RP)
» Stochastic Kinetic Energy Backscatter (SKEB)

Alternative methods (e.g. used at ECMWF) use:
» Stochastic Perturbation of Tendencies (SPT)
» Stochastic Kinetic Energy Backscatter (SKEB)

How does these schemes compare with analysis
iIncrements forcing derived from data assimilation?

The initial conditions are generated by an ETKF
(EnsembleTransform Kalman Filter) and they are
centered around the deterministic 4d-Var analysis.
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picks up
sources of
model error
mainly in the
NH storm track.
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Geographical variation of spread
at T+6 h (CNT:. RP+SKEB)
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Geographical variation of spread
at T+6 h (SPT- CNT)
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> Geographical variation of spread
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MOGREPS
Verification against sondes
Met Office 500 hPa height (m) - NH
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Verification against analysis
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Verification against analysis
Met Office 250 hPa winds (m/s) - Tropics

Wind (m/s) ot 250.0 hPa: Analysis
Tropics (CBS area 18.75N—18.7 825
Equalized and Meaned from 1/2/2016 007 to 15/3/2016 187
Coses: —— ONT  — SPT  — Al
Stots: 4+——+ EM—Anl Speed RMS Error % — — % FC([)—EM Ensemble Spread Speed

& I I I I I

Solid: RMSE 2
Dash: spread

o IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII

[
~
M
[#¥)
~
[
=~

Farecost Ronga {days)

www.metoffice.gov.uk




o
= MOGREPS

g Mean Sea Level Pressure (Pa) - NH
Met Office

Top left:
T+72h error

PMSL (Pa) 2016-02-22 Q0Z: error
T ST A

T

o T
R A
7

Top right:
T+72 h
spread

Bottom left:
T+72h
Spread

3zo0 2700 1500 a00n a 00 1500 2700 0 200 400 8O0 1200 1800

PMSL (Pal 2016-02-22 D0Z: SPT
e =X e

e 3 e

PMSL (Pa) 2016-03-10 00Z: Al
e . 5 P

-

Bottom right:
T+72h
Spread

Solid; ens. mean \ Y 2 IR AR
Dash - an aIySIS 1] 200 4mjo (] 200 400 ] BOO 1200 1800

www.metoffice.gov.uk




e
—r

Met Office

Impact within
En-4DEnVar

www.metoffice.gov.uk

© Crown copyright




Met Office

www.metoffice.gov.uk

En-4DEnVar

Ensemble of four-dimensional ensemble-variational DA:
o hybrid 4D-Var
o perturbed observations
o 44 members
o recentred around deterministic 4D-Var analysis

Model — Met Office N216L70 UM, i.e. 60 km horizontal
resolution and 70 levels (80 km model top).

En-4DEnVar system substantially better than ETKF:
o Large benefit from using additive inflation
o Large portion of the benefit comes from bias correction
o Need to use right season and correct model for the
generation of the analysis increments in the calibration step

Bowler et al., QJ, 2017.
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En-4DEnVar versus ETKF
Verification against analysis
Met Office 850 hPa Temperature (K) - NH
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Operational implementation: the perturbations are scaled by a factor 0.5

Solid: RMSE
Dash: spread

(as a “top-up” of the stochastic physics schemes, rather than replace them)

T850 is a variable where we have large biases, so the bias correction due

to the additive inflation is playing a substantial role here.
Neill Bowler
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— Verification against ECMWF analysis
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Summary
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We rely on the fact that a reliable prior ensemble
and a set of reliable perturbed observations can
be combined to give a reliable analysis ensemble.

We rely on the randomness of analysis
Increments, which means that a reanalysis
trajectory is statistically indistinguishable from
a realisation of the model forced with analysis
Increments.

We demonstrate the benefits of exploiting these
properties in an EDA and EPS.

C. Piccolo and M. Cullen, 2016, MWR, 144, 213-224
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Any questions?
Thank you for your attention
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Further iIssues

Demonstrate importance of using weak-
constraint 4dVar to derive forcing
Increments.

The results shown use a new random forcing
term every 6 hours. Probably the time
correlation of the analysis increments should
be allowed for.




Compare strong and weak constraint
analysis increments (u at 850 hPa)
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— analysis increments(® at 850 hPa)
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Diurnal
correlation
for u
wind?
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semi-diurnal
correlation
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Time correlation of analysis
Increments (NH)

Time Series: u wind
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Significant
longer time
correlation
for u wind.

Diurnal
correlation
for ©.
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analysis increment

analysis increment

Time correlation of analysis
Increments (EQU)

Time Series: u wind
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