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• To generate a reliable ensemble it is important to have 
consistency between initial conditions and model error

• This can be obtained by using an Ensemble Data 
Assimilation (EDA) system

• We rely on the fact that a reliable prior ensemble and a 
set of reliable perturbed observations can be combined 
to give a reliable analysis ensemble.

• This requires the same model error representation in 
EDA and EPS (Ensemble Prediction System)

Summary
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Motivation



Define the truth state xT as the real state of the 

atmosphere averaged to the model grid.

The true evolution is now stochastic, as it depends 

on information missing from xT

The truth xT should be statistically indistinguishable 

from a randomly chosen ensemble member at any 

time – reliability

Observations measure (imperfectly) a single 

realisation of this stochastic model.

Ensembles



EDA EPS

The prior ensemble and 

observation ensemble 

should be reliable.

The analysis ensemble is 

constructed by combining 

random prior members with 

random choices of 

perturbed observations.

Then the analysis ensemble

will be reliable.

Use an ensemble 

data assimilation 

system to represent 

initial uncertainty.

Use observations    

to estimate model 

errors. 

The model error needs to be treated in the same 

way throughout the data assimilation stage (EDA) 

and the subsequent forecast step (EPS).



There are two important ensemble properties:

Reliability: the truth is statistically indistinguishable 

from a randomly chosen ensemble member at 

any time (measured by comparing the ensemble 

spread and the RMSE of the ensemble mean at 

all lead times)

Accuracy: the error in the ensemble mean should be 

as small as possible (measured by improving the 

RMSE of the ensemble mean at all lead times)

Ensembles quality



Model error
calibration



We can evolve the prior pdf using the stochastic model:

where F is the deterministic model and dW is the stochastic 

term with covariance Q (which includes the model error).

The statistics of dW can be characterised by using 

observations (and making stationary assumption) or 

alternatively using stochastic schemes that simulate model 

error within the model itself.

The latter methods are widely used but they only 

represent specific sources of errors.

Using DA methods allow to exploit all available 

observations (taking into account their observation 

errors) to estimate model errors which represent all 

sources of errors.

Choice of model error

dWdtFd  )(xx



Data assimilation methods require a prior pdf.

First step: use cycled deterministic data assimilation to 

estimate the model error (calibration step):

o Since observations measure only a single realisation of the truth 

at each time, the statistics of model error can only be inferred by 

accumulation over a large number of cases.

o Calculate statistics from archive - assuming stationary statistics

o This works if there are sufficient observations available (good 

enough in the atmosphere; not clear in the ocean)

Calibration step:

1. Generate an archive of analysis increments (with stationary 

statistics);

2. Use same model that will be used in the EDA.

Model error estimation using 
DA methods



Assuming that the truth state evolution is given by:

We use a reduced version of the cost function from 
Trémolet (2007) :

where:

where H includes the evolution of the deterministic model 
from the times the model error are added up to the 
observation times. 

Calibration step
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Q can also be inferred from a standard weak-constraint 

data assimilation cycle which calculates both a 

background and a model error increment.

Alternative DA method to derive Q: diagnose model 

error statistics using weak-constraint data assimilation 

(extension of Desroziers method - Bowler 2017, QJ).

Assumption of uncorrelated errors:

o background and observation errors - uncorrelated

o background and model errors - correlated

o model errors are correlated in time

We therefore can not reliably estimate Q in a realistic 

case. So we propose to use the analysis increments 

from the weak-constraint data assimilation calculated   

in the calibration step.

Alternative DA based approaches



Implementation in   
an EDA system:

- EDA set-up
- random assumption of  
analysis increments



Second step: use the model error statistics to generate  

a stochastic forcing term in an EDA system:

o Random analysis increments drawn from an archive are used 

to force each member of the ensemble forecast.

o Minimise error of ensemble mean by using the best available 

deterministic model in the calibration step.

Ensemble DA system: 

1. Use an ensemble of 10 independent 4dVars with perturbed 

observations and SSTs; 

2. Draw every 6 hours random analysis increments from the 

archive;

3. Add at each time step over a window of 6 hours (time-window 

of DA system) perturbations consistent with the statistics of 

the analysis increments, over the overall period of forecast 

integration.

Model – Met Office N320L70 UM, i.e. 40km horizontal 

resolution and 70 levels (80 km model top).

Ensemble DA set-up



xb + b

M(xa+xj
inc)

xb
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xfxa

Take a large sample of the analysis

increments: xinc = xa - xb

xi
inc is a random sample drawn from 

the analysis increments statistics

xb + ebxb + eb

4D-Var xf=M0,t(x
a)

Calibration Step

Ensemble of 4D-Vars using analysis increment statistics as model error
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Ensemble of 4D-Vars using analysis 

increments as forcing term



Assimilation Window

x
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As reanalysis ...

Time

Forecast

Corrected 

forecast   

after event 

occurredCorrected 

forecast with 

stochastic 

forcing

If the analysis increments can be considered as a 
random draw from an archive with stationary statistics, 
a reanalysis trajectory will be statistically 
indistinguishable from a random realisation of the 
model with the stochastic forcing.



+/- indicates 95% confidence interval. 

So difference between spread and RMSE are not 
statistically different from zero.

Thus if the analysis ensemble is reliable, the prior 
ensemble will be reliable at the next cycle.

RMSE

T+6 h

Spread

T+6 h

Rel. Diff (%)

NH 1.98 1.93 2.40+/-1.87

Tropics 2.09 2.15 -2.42+/-1.67

SH 2.67 2.74 -2.68+/-2.02

Random assumption of analysis
increments (u@850hPa)

To test this assumption, we compare the T+6 hours 
ensemble spread with the RMSE of the ensemble 
mean measured against a random analysis member   
as the truth (Bowler et al. 2015).



- ensemble spread skill
- deterministic verification         
of ‘climate’ integration

Performance at 
longer lead times:



Performance in longer forecasts

We look at the performance of the ensemble 
prediction system (EPS) at longer-range 
forecasts using the spread-skill verification: 
ensemble spread versus RMSE of ensemble 
mean. 

We also look at the performance in ‘climate’ 
integrations verified against ERA-interim.

In the latter, we expect results to match Met Office 
reanalyses and not ERA-interim reanalysis   
(differences in observation use, difference in 
background error covariance modelling, etc).



NH

Tropics

SH

Solid: RMSE

Dash: spread

u@850 hPa

RMSE versus spread 
at longer lead times



Ensemble mean versus 
deterministic RMSE

NH

Tropics

SH

Solid: 

ens mean

Dash-dot: 

control

u@850 hPa



10 years average vs ERA-Interim
height at 500 hPa - jja

Model

resolution

125 km

34% 

better



10 years average vs ERA-Interim
upper tropospheric humidity - jja

Model

resolution

125 km

Tropical 

tropopause

bias:

17% better



Comparison with 
stochastic schemes



There are various stochastic scheme to simulate the 

model error within the model itself.

Operational MOGREPS uses:

Random perturbations to physical parameters (RP)

Stochastic Kinetic Energy Backscatter (SKEB)

Alternative methods (e.g. used at ECMWF) use:

Stochastic Perturbation of Tendencies (SPT)

Stochastic Kinetic Energy Backscatter (SKEB)

How does these schemes compare with analysis 

increments forcing derived from data assimilation?

The initial conditions are generated by an ETKF 

(EnsembleTransform Kalman Filter) and they are 

centered around the deterministic 4d-Var analysis.

Stochastic schemes

CNT

SPT

AI



Geographical variation of spread 
at T+6 h (CNT: RP+SKEB)

CNT picks up 
sources of 
model error 
mainly in the 
NH storm track.



Geographical variation of spread 
at T+6 h (SPT- CNT)

SPT shows 
localised 
increase of 
spread in the 
NH storm 
track and 
tropics.



AI introduces 
more large 
scale spread 
across all 
regions but 
lacks flow-
dependency. 
It also better 
represents 
the error in 
the SH and 
tropics.

Geographical variation of spread 
at T+6 h (AI - CNT)



MOGREPS 
Verification against sondes
500 hPa height (m) - NH

Solid: RMSE

Dash: spread



MOGREPS 
Verification against analysis

Mean Sea Level Pressure (Pa) - NH

Solid: RMSE

Dash: spread



MOGREPS 
Verification against analysis

250 hPa winds (m/s) - Tropics

Solid: RMSE

Dash: spread



Top left:    
T+72h error

Top right:    
T+72 h CNT
spread

Bottom left: 
T+72h  SPT
spread

Bottom right: 
T+72h AI
spread

Solid: ens. mean 
Dash: analysis

MOGREPS 
Mean Sea Level Pressure (Pa) - NH



Impact within
En-4DEnVar



En-4DEnVar

Ensemble of four-dimensional ensemble-variational DA:

o hybrid 4D-Var

o perturbed observations

o 44 members

o recentred around deterministic 4D-Var analysis

Model – Met Office N216L70 UM, i.e. 60 km horizontal 

resolution and 70 levels (80 km model top).

En-4DEnVar system substantially better than ETKF:

o Large benefit from using additive inflation

o Large portion of the benefit comes from bias correction

o Need to use right season and correct model for the 

generation of the analysis increments in the calibration step

Bowler et al., QJ, 2017.



Bowler et al., QJ, 2017.

En-4DEnVar versus ETKF
Verification against sondes
500 hPa winds (m) - NH

Solid: RMSE

Dash: spread

AI

AI x 0.5



En-4DEnVar versus ETKF
Verification against analysis

850 hPa Temperature (K) - NH

Solid: RMSE

Dash: spread

En-4DEnVar

ETKF

Neill Bowler

T850 is a variable where we have large biases, so the bias correction due 

to the additive inflation is playing a substantial role here.

Operational implementation: the perturbations are scaled by a factor 0.5  

(as a “top-up” of the stochastic physics schemes, rather than replace them)



En-4DEnVar versus ETKF
Verification against ECMWF analysis

Jan/Feb 2016

Better CRPS

Worse CRPS

May/June 2015

Continuous

Ranked

Probability

Score

Neill Bowler



Summary



Summary

We rely on the fact that a reliable prior ensemble 
and a set of reliable perturbed observations can 
be combined to give a reliable analysis ensemble.

We rely on the randomness of analysis 
increments, which means that a reanalysis 
trajectory is statistically indistinguishable from       
a realisation of the model forced with analysis 
increments.

We demonstrate the benefits of exploiting these 
properties in an EDA and EPS.

C. Piccolo and M. Cullen, 2016, MWR, 144, 213-224



Any questions?
Thank you for your attention



Further issues



Further issues

Demonstrate importance of using weak-
constraint 4dVar to derive forcing 
increments.

The results shown use a new random forcing 
term every 6 hours. Probably the time 
correlation of the analysis increments should 
be allowed for.



Compare strong and weak constraint 
analysis increments (u at 850 hPa)

More 
variance 
and larger 
scale if 
consistent.

Strong constraint Weak constraint



Compare strong and weak constraint 
analysis increments( at 850 hPa)

More 
variance 
and larger 
scale if 
consistent: 
bigger 
effect!

Strong constraint Weak constraint



Time correlation of analysis 
increments (NH)

Strong  

semi-diurnal 

correlation 

for .

Diurnal 

correlation 

for u 

wind?



Time correlation of analysis 
increments (EQU)

Diurnal 

correlation 

for .

Significant 

longer time 

correlation 

for u wind.


