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Introduction

@ Estimating the uncertainty in the initial conditions is a key
aspect for both data assimilation and ensemble prediction

@ Accurate estimates of the uncertainty in analysis and background
states :

@ help better use the observations in DA
= better analyses and forecasts

e provide guidance for the design of appropriate initial
perturbations for EPS
= better ensemble forecasts



Introduction

@ The data assimilation problem can be described from a Bayesian
perspective : p(z|y°) = p(y°|z) Xp(x) I')@j)p(m)

@ In the last decade, Monte-Carlo methods became operationally
feasible approaches to converge to the solution of the Bayesian
filtering, e.g., :

@ Ensemble Kalman Filters (N. Bowler’s talk)

@ Ensemble of Data Assimilations (EDA, this talk!)
= ensemble of cycled 3D or 4D-Vars with perturbed observations
~ variational counterpart of the EnKF



Introduction

> Why running an EDA ?
@ It provides an ensemble of background states from which the
background-error statistics (B-matrix) can be estimated

@ It provides an ensemble of analyses that can be used to initialize
ensemble predictions.

> Aim of this talk
@ Present the principle and configurations of some
operational /research EDA systems

@ Present the impact of coupling EPS to EDA, based on
experiences at Météo-France and MetOffice.
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1 - EDA : how does it work ?

> Simulate the error cycling through evolution of observation
perturbations (drawn from N(0,R)) and model perturbations.



1 - Theoretical formalism

Evolution of true errors (e = x* — x!, e’ = x* — x*)

e’ = (I- KH)e’ + Ke®
e’ = Me® +e™

Evolution of ensemble perturbations

a _ a _a b __ b b
(6 _Xpert Xetrlr € _Xpert Xctrl)

€ = (I-KH)e’ + Ke®
e’ = Me® + €™

> The evolution of ensemble perturbations is the same as the
evolution of exact errors!



1 - Some issues

@ Natural way to develop an ensemble DA when already running a
variational DA scheme (reduced maintenance costs)

@ Requires accurate estimates of observation error and model error
statistics (R and Q matrix)

e EDA implementations come with some post-processing tools such
as variance filtering and covariance localization to reduce the
impact of sampling noise (due to the use of small-size ensembles)

@ Consistency with the deterministic 3D/4D-Var schemes and EPS,
e.g., choice of horizontal resolution.



1 - Practical applications

> Current implementations of EDA systems apply to :
e 3D/4D-Var
o En3D/4D-Var, e.g., Météo-France, ECMWF (operational)
@ 3D/4D-EnVar, e.g., UKMO (in test)
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1 - Results

Is the EDA a good indicator of analysis uncertainty ?

> Connection between large errors and intense weather
(Xynthia storm, 28/02/2010, 03 UTC, vorticity standard deviations from
an ensemble of Arpege 4D-Vars)
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2 - Arpege EDA

> Global EDA operational at Météo-France since 2008, based on the
Arpege 6h 4D-Var scheme (Berre et al., 2007) :
@ 25 members with 4D-Var, T479 (40 km) L105, minim T149

@ Perturbations of 4D-Var analyses : obs perturbs. (drawn from R)
and background perturbs (cycling of analysis perturbs and model
perturbs)

@ Model error accounted for with a multiplicative inflation (cycled)
of forecast perturbations, based on innovation estimates (N.
Bowler’s talk).

> Used to :

@ Provide a flow-dependent B-matrix to the Arpege 4D-Var
@ Provide perturbed initial states to Arpege EPS



2 - Arome EDA

> LAM EDA currently being developed at Météo-France, based on the
convective-scale Arome 3D-Var scheme :

@ 25 members with 3 hourly 3D-Var at 3.8km spatial resolution

@ Perturbed observations, perturbed SST, inflation (“spread-skill”)
scheme

@ Planned for operations in 2018

6h ARPEGE
EDA

(ensemble of
global 4DVars)
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boundary
conditions
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LAM 3DVars)

(Courtesy Y. Michel)



2 - Ensemble of 4D-EnVars at UKMO

> Early implementations of the En-4DEnVar system at Met Office, in
order to replace the operational ETKF (Bowler et al., 2017)

@ Tests mainly with 44 members (operational expectation ~ 100
members) on a 800x600 grid

@ Perturbations to SST, soil moisture and temperature

@ Relaxation-to-prior-perturbations and spread

@ Model error simulation includes additive inflation, SKEB and
random parameters

@ Self-exclusion to avoid inbreeding
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3 - Initializing EPS with EDA

Why coupling EPS to EDA ?

@ EDA provides a flow-dependent estimate of the initial uncertainty

@ EDA provides consistent initial perturbations at all scales
resolved by the model (providing EDA and EPS resolutions are
close ...)

Ensemble analysis Ensemble forecast

4D-Var trajectories

First guesses
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3 - Initializing EPS with EDA

How to couple EPS to EDA?

@ Direct use of perturbed analysis (or background) states to
initialize EPS
@ Recentre analysis (or background) perturbations around a

higher-resolution analysis

@ Combine centered EDA perturbations with other perturbation
methods (e.g., singular vectors, breeding modes)

Reference

S. Lang, M. Bonavita and M. Leutbecher, 2015 : On the impact of re-centring initial
conditions for ensemble forecasts, Q. J. R. Meteorol. Soc., 141, 2571-2581.




3 - Arpege-EPS

@ 34 perturbed members + control run
@ Running at : 06UTC (90h range) and 18UTC (108h range)

@ Forecasts resolution : T798C2.4L.90 (~10km over Europe, 60km
on the opposite side of the globe)

@ Initial conditions : combination of Arpege EDA perturbed states
(centred on the higher resolution deterministic analysis) with
singular vectors

@ Model error accounted for with the multiphysics approach,
considered to provide a valuable flow-dependent sampling of the
uncertainty in the physical parametrizations :

@ 10 different physical parametrization sets, including the Arpege
deterministic physical package

@ different schemes for turbulence, shallow convection, deep
convection and for the computation of oceanic fluxes.

Reference

L. Descamps, C. Labadie, A. Joly, E. Bazile, P. Arbogast and P. Cébron, 2015 : PEARP,
the Météo-France short-range ensemble prediction system, Q. J. R. Meteorol. Soc., 141,
1671-1685.




3 - Initializing Arpege-EPS with Arpége-EDA

Score de Brier
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3 - AROME-EPS

@ Based on the non-hydrostatic convective-scale Arome-France
model with a 2.5km horizontal resolution

@ 12 perturbed members

@ Running at 09UTC and 21UTC up to 45h

@ Initial perturbations and lateral boundary conditions provided by
selected runs of the Arpege EPS (through a clustering technique)
= these ICPs should be replaced by AROME-EDA by 2018

o Initial perturbations are centred around the high-resolution
deterministic analysis (at 1.3km)

@ Random perturbations added to some surface variables (including
SST, soil temperature and humidity)

@ Model error represented with stochastic physics (SPPT scheme).

F. Bouttier, O. Nuissier, B. Vié and L.Raynaud, 2012 : Impact of stochastic physics in a
convection-permitting ensemble, Monthly Weather Review, 140, 3706-3721.

Reference J




3 - Initializing AROME-EPS with AROME-EDA
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@ EDA perturbations are
much more smaller scale
than downscaled Arpege
EPS perturbations

o
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(a) Oh (b) 1h o Downscaled perturbations
show a very large growth
rate for smaller scales
during the first hours, but

] it requires about 12h to
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! spectrum at all scales.
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Reference

L. Raynaud and F. Bouttier, 2016 : Comparison of initial perturbation methods for
ensemble prediction at convective scale, QJRMS, 142, 854-866.




3 - Inltlallzmg AROME-EPS with AROME-EDA

o In agreement with the
spectra, the ensemble spread
converges towards that of the
EDA-based EPS only from 9h
= there should be an impact
of the EDA initialization at
very short ranges.

(e) 9h (f) 9h



3 - Initializing AROME-EPS with AROME-EDA

> Scores computed over the period 1-28 February 2017.
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= Large impact of EDA, especially at short ranges.




3 - Initializing MetUM EPS with En-4DEnVar

> En-4DEnVar vs ETKF (44 members each, Bowler et al., 2017)
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4 - Conclusions and future works

@ Ensemble of variational data assimilation methods are
straightforward to implement upon existing 3D/4D-Var schemes

@ They provide perturbed states that can be used to initialize EPS,
both at global and regional scales

@ Operational at Météo-France and ECMWF

@ Next step is the development of ensembles of 4DEnVars
competitive with existing EDA and/or EnKF.



4 - Conclusions and future works

> Future works/open questions (non-exhaustive)

@ What is the impact of EDA resolution and size on EPS?

@ Until now EDA size < EPS size but this may change in the next
years with the development of 4D-EnVar schemes
= Is there a clever way to select the best EDA members to
initialize EPS?

@ Recentring of EDA perturbations on a deterministic
high-resolution analysis has proved beneficial in several systems,
but how does this affect initial balances and short-range EPS
skill ?

@ Delay between EDA and EPS productions, what is the impact 7

o Initialize EPS with EDA only (without SV for instance) : dream
or close reality ?
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