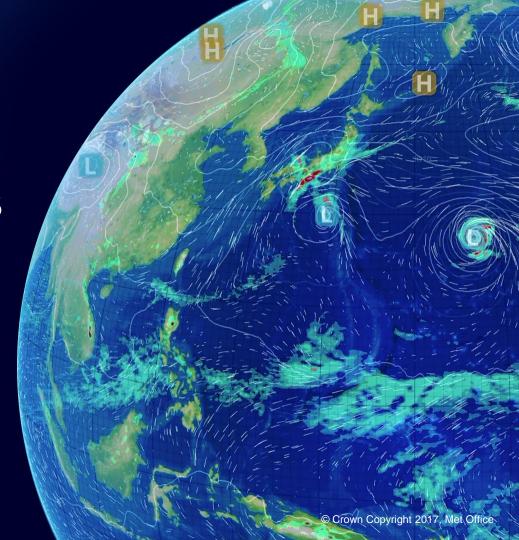


EnKF methods to initialize ensembles

Neill Bowler

ECMWF annual seminar



Contents

Basic derivation of EnKF

Localisation

Inflation

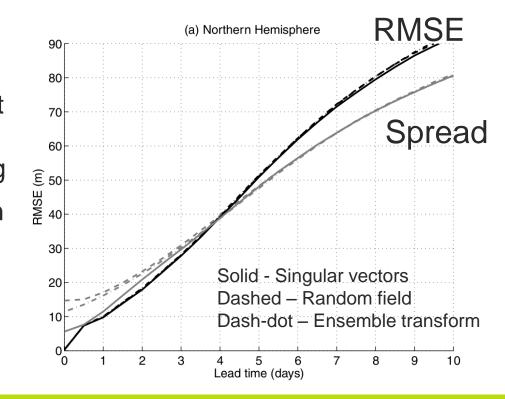
Inbreeding, non-linearity ...

Conclusion

... before we begin

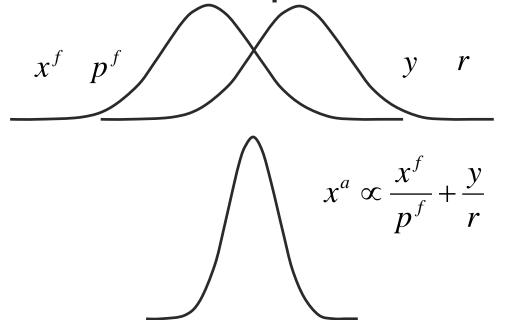
So what?

Magnusson et al (2009) showed that initialisation method matters little for medium-range ensemble forecasting Increased focus on data assimilation as a way to measure performance

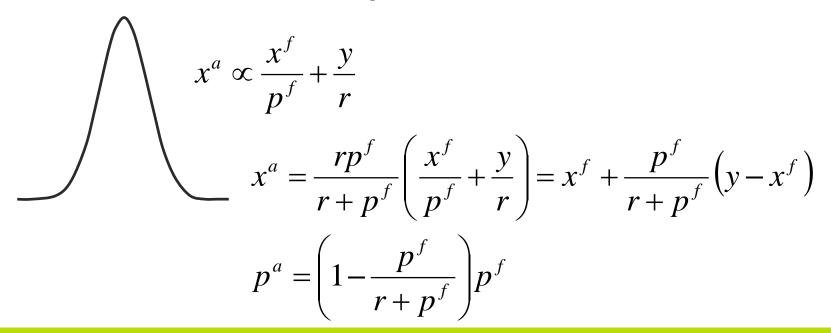


© Crown Copyright 2017, Met Office

How to make an optimal estimate



How to make an optimal estimate



Kalman filter equations

Update
$$\mathbf{K}_{n} = \mathbf{P}_{n}^{f} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{P}_{n}^{f} \mathbf{H}^{T} + \mathbf{R}_{n} \right)^{-1}$$

$$\mathbf{x}_{n}^{a} = \mathbf{x}_{n}^{f} + \mathbf{K}_{n} \left(\mathbf{y}_{n} - \mathbf{H} \mathbf{x}_{n}^{f} \right)$$

$$\mathbf{P}_{n}^{a} = \mathbf{P}_{n}^{f} - \mathbf{K}_{n} \mathbf{H} \mathbf{P}_{n}^{f}$$

Forecast
$$\mathbf{x}_n^f = \mathbf{M}\mathbf{x}_{n-1}^a$$
 $\mathbf{P}_n^f = \mathbf{M}\mathbf{P}_{n-1}^a\mathbf{M}^T + \mathbf{Q}_n$

NWP approximations

Update
$$\mathbf{K}_{n} = \mathbf{P}_{n}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}_{n}^{f} \mathbf{H}^{T} + \mathbf{R}_{n})^{-1}$$

$$\mathbf{x}_{n}^{a} = \mathbf{x}_{n}^{f} + \mathbf{K}_{n} (\mathbf{y}_{n} - \mathbf{H} \mathbf{x}_{n}^{f})$$

$$\mathbf{P}_{n}^{a} = \mathbf{P}_{n}^{f} - \mathbf{K}_{n} \mathbf{H} \mathbf{P}_{n}^{f}$$

Forecast
$$\mathbf{x}_n^f = \mathbf{M}\mathbf{x}_{n-1}^a$$

$$\mathbf{P}_n^f = \mathbf{M}^a \mathbf{M}^T + \mathbf{Q}_n$$

The model-size problem

Operational model has 2.7x10⁹ variables

Pf has 7x10¹⁸ entries (thousands of peta-bytes)

Use an ensemble to sample from this

$$\mathbf{X}_{n}^{f} = \frac{1}{\sqrt{N-1}} \left(\mathbf{x}_{n}^{f,1} - \overline{\mathbf{x}_{n}^{f}} \quad \mathbf{x}_{n}^{f,2} - \overline{\mathbf{x}_{n}^{f}} \quad \dots \quad \mathbf{x}_{n}^{f,N} - \overline{\mathbf{x}_{n}^{f}} \right)$$

Ensemble Kalman filter equations

Update
$$\mathbf{K}_{n} = \mathbf{P}_{n}^{f} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{P}_{n}^{f} \mathbf{H}^{T} + \mathbf{R}_{n} \right)^{-1}$$

$$\mathbf{x}_{n}^{a,i} = \mathbf{x}_{n}^{f,i} + \mathbf{K}_{n} \left(\mathbf{y}_{n} + \gamma_{n}^{i} - H \left(\mathbf{x}_{n}^{f,i} \right) \right)$$

$$\gamma_{n}^{i} \sim N(0, \mathbf{R}_{n})$$
Forecast
$$\mathbf{x}_{n}^{f,i} = M \left(\mathbf{x}_{n-1}^{a,i} \right) + \eta_{n}^{i} \qquad \mathbf{P}_{n}^{f} = \mathbf{L} \circ \mathbf{X}_{n}^{f} \mathbf{X}_{n}^{f,T}$$

Danger!

In making the switch to using ensembles and nonlinear models we have introduced many potential problems, mostly related to sampling error

- Localisation
- Inflation
- Perturbed observations
- Inbreeding

Perturbations or analyses?

Update state

$$\mathbf{x}_{n}^{a,i} = \mathbf{x}_{n}^{f,i} + \mathbf{K}_{n} \left(\mathbf{y}_{n} + \gamma_{n}^{i} - H \left(\mathbf{x}_{n}^{f,i} \right) \right) \overline{\mathbf{x}_{n}^{a}} = \overline{\mathbf{x}_{n}^{f}} + \mathbf{K}_{n} \left(\mathbf{y}_{n} - H \left(\overline{\mathbf{x}_{n}^{f}} \right) \right)$$

Like an EDA

Update mean

$$\overline{\mathbf{x}_{n}^{a}} = \overline{\mathbf{x}_{n}^{f}} + \mathbf{K}_{n} \left(\mathbf{y}_{n} - H \left(\overline{\mathbf{x}_{n}^{f}} \right) \right)$$

Update perturbations

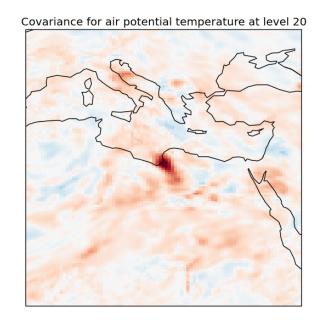
$$\hat{\mathbf{x}}_{n}^{a,i} = \hat{\mathbf{x}}_{n}^{f,i} + \mathbf{K}_{n} \left(\gamma_{n}^{i} - \mathbf{H} \hat{\mathbf{x}}_{n}^{f,i} \right)$$

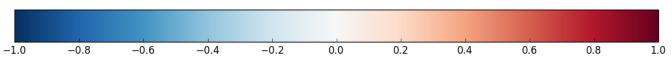
www.metoffice.gov.uk

An ensemble can provide a sample of a background-error covariance matrix.

These samples are typically small.

We need to remove the noise.



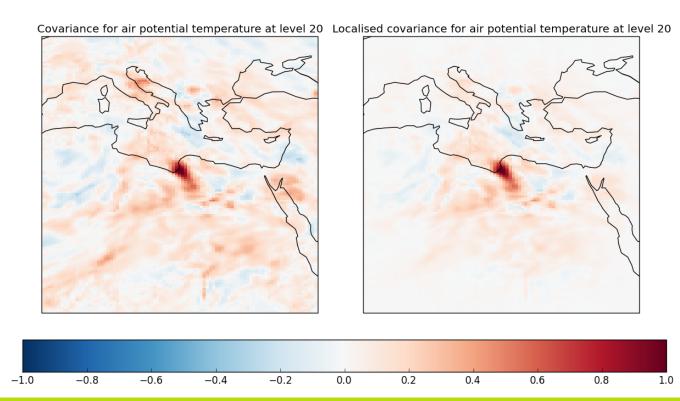


Covariance matrices have certain properties

- Positive semi-definite
- Symmetric, etc

Hadamard (Schur, elementwise) product of two covariance matrices is a covariance matrix

Assume that distant points are uncorrelated, and define a localising covariance matrix which enforces this



www.metoffice.gov.uk

Perturbed observations

www.metoffice.gov.uk

Perturbed observations and square-root filters

$$\mathbf{x}_{n}^{a,i} = \mathbf{x}_{n}^{f,i} + \mathbf{K}_{n} \left(\mathbf{y}_{n} + \gamma_{n}^{i} - H(\mathbf{x}_{n}^{f,i}) \right)$$
$$\gamma_{n}^{i} \sim N(0, \mathbf{R}_{n})$$

Perturbed observations -> extra sampling error

Avoid this using square-root filters

$$\mathbf{P}_{n}^{a} = (\mathbf{I} - \mathbf{K}_{n} \mathbf{H}) \mathbf{P}_{n}^{f}$$

$$\mathbf{X}_{n}^{a} = (\mathbf{I} - \mathbf{K}_{n} \mathbf{H})^{1/2} \mathbf{X}_{n}^{f}$$

EnSRF

Ensemble square-root filter (Whitaker & Hamill 2002)

Treat observations one at a time

$$\hat{\mathbf{x}}_n^{a,i} = (\mathbf{I} - \alpha \mathbf{K}_n \mathbf{H}) \hat{\mathbf{x}}_n^{f,i}$$

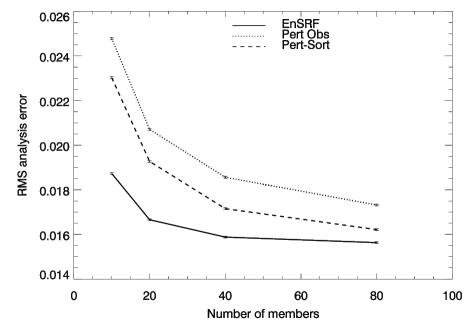
Gain reduction factor

$$\alpha = \left(1 + \sqrt{\frac{\mathbf{R}}{\mathbf{H}\mathbf{P}^f\mathbf{H}^T + \mathbf{R}}}\right)^{-1}$$

Perturbed observations and square-root filters

Comparison within Lorenz (1996) model (40 variables, mild nonlinearity)

Observations every grid-point (Bowler & Flowerdew, 2013)



Perturbed observations may be good

Square-root filters use simplified analysis-error covariance

$$\mathbf{P}_n^a = \left(\mathbf{I} - \mathbf{K}_n \mathbf{H}\right) \mathbf{P}_n^f$$

Perturbed-observations actually samples from

$$\mathbf{P}_{n}^{a} = \left(\mathbf{I} - \mathbf{K}_{n} \mathbf{H}\right) \mathbf{P}_{n}^{f} \left(\mathbf{I} - \mathbf{K}_{n} \mathbf{H}\right)^{\mathrm{T}} + \mathbf{K}_{n} \mathbf{R} \mathbf{K}_{n}^{\mathrm{T}}$$

In a nonlinear system the perturbations can become substantially non-Gaussian. Perturbed observations help maintain Gaussianity (Lawson & Hansen, 2004)

Inflation

www.metoffice.gov.uk

The need for inflation

Tight localisation -> Imbalance in perturbations, slow growth

Broad localisation -> Over-estimation of observation impact, small spread

There is no single correct answer

Typically inflation is needed to increase spread

Model error?

Multiplicative inflation

- Simplest method to counter lack of spread in the ensemble
- Multiply perturbations by inflation factor

$$\mathbf{x}^{a,i} \to \overline{\mathbf{x}^a} + \beta \left(\mathbf{x}^{a,i} - \overline{\mathbf{x}^a} \right)$$

Tuning required

Adaptive inflation

Wang and Bishop (2003) proposed a simple adaptive scheme

$$\beta_n = \beta_{n-1} \sqrt{\frac{\left(\mathbf{d}_f^o\right)^{\mathrm{T}} \mathbf{d}_f^o - Tr(\mathbf{R})}{Tr(\mathbf{H}\mathbf{P}^f \mathbf{H}^{\mathrm{T}})}}$$

This can be estimated for different regions (Bowler et al (2009), Flowerdew & Bowler (2013))

An alternative adaptive inflation scheme was developed by Anderson (2008)

Inflation oscillations

The observing network varies (more sondes 0, 12 UTC)

Wang & Bishop method based on what the inflation factor should have been

$$\beta_n = \beta_{n-1} \sqrt{\frac{\left(\mathbf{d}_f^o\right)^{\mathrm{T}} \mathbf{d}_f^o - Tr(\mathbf{R})}{Tr(\mathbf{H}\mathbf{P}^f \mathbf{H}^{\mathrm{T}})}}$$

Larger inflation factor needed at 0, 12 UTC, but applied at 6, 18 UTC

Adaptive inflation

Ying & Zhang (2015) proposed a different method

$$\beta_n = \sqrt{\frac{\left(\mathbf{d}_a^f\right)^{\mathrm{T}} \mathbf{d}_o^a}{Tr\left(\mathbf{H}\mathbf{P}_a\mathbf{H}^{\mathrm{T}}\right)}}$$

$$\mathbf{d}_o^a = \mathbf{y} - H(\mathbf{x}_a)$$

$$\mathbf{d}_a^f = H(\mathbf{x}_a) - H(\mathbf{x}_f)$$

Ratio of measured analysis spread to actual analysis spread

Should avoid oscillation issues, since dealing with analysis spread at current time

Inflation in the Météo-France system

A global factor to counter under-spread in the ensemble system (Raynaud et al, 2012)

Uses ratio of cost-function minimum to optimal minimum

$$J_b^{theo}(\mathbf{x}_a) = Tr(\mathbf{HK})$$

$$\beta_n = \sqrt{\frac{\mathbf{V}_s}{\sigma_f^2} \frac{J_b(\mathbf{x}_a)}{J_b^{theo}(\mathbf{x}_a)}}$$

Specified variance from a climatological ensemble

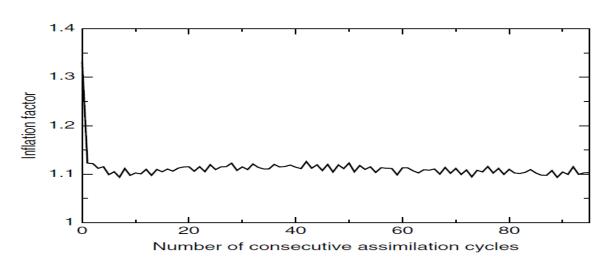
Theoretical cost-function minimum, calculated from the EDA (Desroziers et al., 2009)

Inflation in the Météo-France system

Compensation for model error

neglect in En-DA

Relatively stable



Relaxation methods

Multiplicative inflation can lead to over-spread in poorly observed regions

Relax perturbations back towards the forecast perturbations / spread

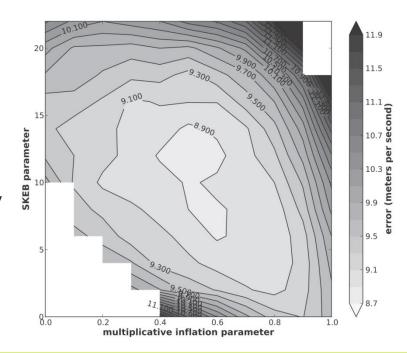
RTPP / RTPS

Popular

Inflation and model error

Whitaker and Hamill (2012) looked at combining model error representation with inflation methods

Showed that multiplicative inflation and representing model error are complementary – both are needed



Other issues

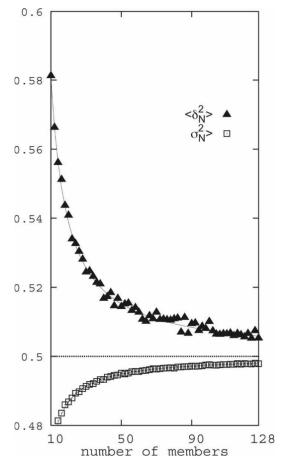
www.metoffice.gov.uk

Inbreeding

The standard EnKF has a bias – with a finite ensemble the error is increased, but the spread decreased (Sacher & Bartello, 2009)

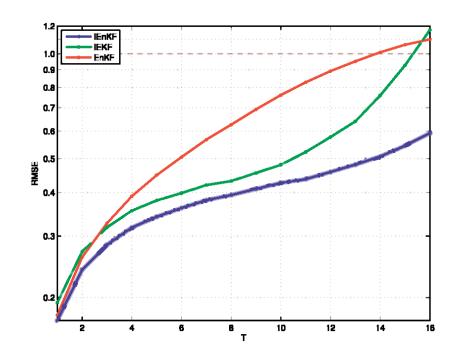
Inbreeding – using each ensemble perturbation in the covariance used to update that ensemble

Solution – split the ensemble into *M* sub-ensembles; use the *M-1* other sub-ensembles when updating Introduces positive bias into ensemble spread



Iterative EnKF

EnKF struggles in non-linear systems
Variational DA can use outer-loops
EnKF can be iterated by re-running the ensemble member forecasts with updated information (Sakov et al, 2012)
Costly



Comparison with other methods

Increased focus on short-range

Compared with error-breeding or singular vectors

- Slower growth of perturbations
- Useful in data assimilation

Comparison with EDA

Essentially the same method

- Easier to set up
 - Better for coupled modelling
- Update algorithm cheaper, and very scalable

- Can't use hybrid covariances
- Outer loop (iterative EnKF) expensive
- Either batches of observations, or observation-space localisation
 - Extracts less benefit from satellite observations

References

Anderson JL, 2008: Tellus A, 61: 72-83, DOI: 10.1111/j.1600-0870.2008.00361.x

Bowler NE, Arribas A, Beare SE, Mylne KR, Shutts G, 2009: Q. J. R. Meteorol. Soc., 135: 767-776

Bowler NE, Flowerdew J, 2013: Q. J. R. Meteorol. Soc., 139: 1505-1519, DOI:10.1002/qj.2055

Flowerdew J, Bowler NE, 2013: Q. J. R. Meteorol. Soc., 139: 1863-1874, DOI:10.1002/qj.2072

Lawson WG, Hansen JA, 2004: *Mon. Wea. Rev.*, **132**, 1966–1981, DOI: 10.1175/1520-0493(2004)132<1966:IOSADF>2.0.CO;2

Lorenz EN, 1996: Proceedings of the seminar on predictability, ECMWF: pp. 1–18

Magnusson L, Nycander J, Källén E, 2009: Tellus A, 61: 194-209, DOI: 10.1111/j.1600-0870.2008.00385.x

Raynaud L, Berre L, Desroziers G, 2012: Q. J. R. Meteorol. Soc., 138: 249-262, DOI: 10.1002/qj.906

Sacher W, Bartello P, 2008: Mon. Wea. Rev., 136: 3035-3049, DOI: 10.1175/2007MWR2323.1

References

Sakov P, Oliver DS, Bertino L, 2012: *Mon. Wea. Rev,* **140**: 1988-2004, DOI: 10.1175/MWR-D-11-00176.1

Wang X, Bishop CH, 2003: J. Atmos. Sci., 60: 1140-1158, DOI: 10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2

Whitaker JS, Hamill TM: 2002, Mon. Wea. Rev. 130: 1913-1924, DOI: 10.1175/1520-

0493(2002)130<1913:EDAWPO>2.0.CO;2

Whitaker JS, Hamill TM: 2012, Mon. Wea. Rev. 140: 3078-3089, DOI: 10.1175/MWR-D-11-00276.1

Ying Y, Zhang F: 2015, Q. J. R. Meteorol. Soc. 141: 2898-2906, DOI:10.1002/qj.2576

Zhang F, Snyder C, Sun J: 2004, *Mon. Wea. Rev.* **132**: 1238-1253, DOI: 10.1175/1520-0403(2004)433 41338:IOLEAO: 3.0 CO:3

0493(2004)132<1238:IOIEAO>2.0.CO;2

Other developments

Proposal for hybrid EnKF

Successive covariance localisation

Relaxation to prior perturbations (RTPP)

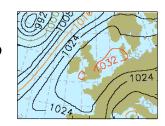
Multiplicative inflation can lead to $\sigma_a^2 > \sigma_f^2$

Therefore apply a relaxation rather than inflation (Zhang et al, 2004)

$$\mathbf{x}^{a,i} \longrightarrow \overline{\mathbf{x}^a} + (1-\beta)(\mathbf{x}^{a,i} - \overline{\mathbf{x}^a}) + \beta(\mathbf{x}^{f,i} - \overline{\mathbf{x}^f})$$

$$(1-\beta)$$

Analysis perturbation



Forecast perturbation

Relaxed perturbation

Relaxation to prior spread (RTPS)

RTPP mixes analysis and forecast perturbations

Forecast perturbations are larger-scale, more balanced

Therefore relax the spread, not the perturbations (Whitaker & Hamill, 2012)

$$\mathbf{x}^{a,i} \to \mathbf{\overline{x}}^{a} + \beta \left(\mathbf{x}^{a,i} - \mathbf{\overline{x}}^{a} \right)$$

$$\beta = \frac{\varphi \sigma_{f} + (1 - \varphi) \sigma_{a}}{\sigma}$$

© Crown Copyright 2017, Met Office