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So what?

Magnusson et al (2009) showed that
Initialisation method matters little for
medium-range ensemble forecasting

Increased focus on data assimilation
as a way to measure performance
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How to make an optimal estimate
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How to make an optimal estimate
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Kalman filter equations

Update K_ =P/ HT(HPnf H' + Rn)_l
X3 =X + Kn(yn —erf)
P:=P —K_ HP,

Forecast X' =MX2, P, =MPZ,M" +Q,
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NWP apprOX|mat|ons

Update = P@ HP. "HT + R

X2 =x'+K, %] )
P =P, — KnHPnf

Forecast X' =MX2,
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The model-size problem

Operational model has 2.7x10° variables

Pt has 7x1018 entries (thousands of peta-bytes)
Use an ensemble to sample from this

X = 1_yf yf2 _yf 5 FoN f)

n ( n n n - o %,
VN -1
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Ensemble Kalman filter equations
Update K =P HT(HPnf T Rn)—l

X3 =x" 4 Kn(yn +y —H (xrf]’i ))

7o~ N(O,R,)
Forecast Xf’i =M (Xf]‘fl)q- 77:1 pnf — Lo Xri X: T
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Danger!

In making the switch to using ensembles and nonlinear models we have
introduced many potential problems, mostly related to sampling error

Localisation

Inflation

Perturbed observations
Inbreeding
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Perturbations or analyses?

Update state Update mean

ai _ f,i i fi —f
X" =X, +Kn(yn+7/n—H(xn ))x =X, +K(n (n))
Like an EDA Update perturbations

KT =% K (7 —HR)

n
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. . Covariance for air potential temperature at level 20
_ocalisation
. AN ¢
An ensemble can provide a sample of U
a background-error covariance matrix A

These samples are typically small
We need to remove the noise
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| ocalisation

Covariance matrices have certain properties
- Positive semi-definite

- Symmetric, etc
Hadamard (Schur, elementwise) product of two covariance matrices is a
covariance matrix

Assume that distant points are uncorrelated, and define a localising
covariance matrix which enforces this
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Covariance for air potential temperature at level 20 Localised covariance for air potential temperature at level 20

| ocalisation
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Perturbed observations and square-root
filters

& = x4+ Ky, +7 —H(x!))

7, ~N(O,R,)

Perturbed observations -> extra sampling error
Avoid this using square-root filters P:‘ = (| -K, H)Pnf

X2 =(1-K H)2X!

n
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EnSRF

Ensemble square-root filter (Whitaker & Hamill 2002)
Treat observations one at a time

8 =(1—aK H)K!

n

Gain reduction factor 1

R
o = 1+\/ —
HP H +R
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Perturbed observations and square-root
filters
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Perturbed observations may be good

Square-root filters use simplified analysis-error

covariance pa — (| -K._ H)pnf

n
Perturbed-observations actually samples from

P2 =(1-K HP'(1-K_H) +K RK'

In a nonlinear system the perturbations can become
substantially non-Gaussian. Perturbed observations
help maintain Gaussianity (Lawson & Hansen, 2004)
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The need for inflation

Tight localisation -> Imbalance in perturbations, slow growth

Broad localisation -> Over-estimation of observation impact, small spread
There is no single correct answer

Typically inflation is needed to increase spread

Model error?
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Multiplicative inflation

Simplest method to counter lack of spread in the ensemble
Multiply perturbations by inflation factor

X — x° +,B(x""’i —xa)

Tuning required
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Adaptive inflation

Wang and Bishop (2003) proposed a simple adaptive scheme

5y [@i)di-Tr(R)
" Tr(HPTHT)
This can be estimated for different regions (Bowler et al (2009),
Flowerdew & Bowler (2013))

An alternative adaptive inflation scheme was developed by Anderson
(2008)
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Inflation oscillations

The observing network varies (more sondes 0, 12
UTC)

Wang & Bishop method based on what the inflation
factor should have been (df; )Tdc; —Tr(R)

Po =P Tr(HPTHT)
Larger inflation factor needed at 0, 12 UTC, but
applied at 6, 18 UTC
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Adaptive inflation

Ying & Zhang (2015) proposed a different method

(d; )Td Z‘ Ratio of measured analysis spread to
by = T actual analysis spread
Tr(HP,H™)
a
d =Yy- H( ) Should avoid oscillation issues, since
df = ( ) H( ) dealing with analysis spread at current
a

time
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Inflation in the Météo-France system

A global factor to counter V, J, (Xa)
under-spread in the ensemble :Bn = 2 ] theo( )
system (Raynaud et al, 2012) O Jp Xy
Uses ratio of cost-function \/_ Specified variance from a
minimum to optimal minimum > climatological ensemble

Theoretical cost-function
Jtt)heo(x ):Tr(HK) minimum, calculated from the EDA
a .
(Desroziers et al., 2009)
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Inflation in the Météo-France system

Compensation for model error

neglect in En-DA ‘o
Relatively stable 0 __
ig - w
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b ' >0 ' 20 ' =) ' 80 '

Number of consecutive assimilation cycles

www. metoffice.gov.uk © Crown Copyright 2017, Met Office



== Met Office

Relaxation methods

Multiplicative inflation can lead to over-spread in poorly observed regions
Relax perturbations back towards the forecast perturbations / spread

RTPP / RTPS
Popular
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Inflation and model error

Whitaker and Hamill (2012) looked at
combining model error representation with
Inflation methods
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Inbreeding
The standard EnKF has a bias — with a finite
ensemble the error is increased, but the spread 5

decreased (Sacher & Bartello, 2009)

Inbreeding — using each ensemble perturbation in the o.s:
covariance used to update that ensemble

5

Solution — split the ensemble into M sub-ensembles;
use the M-1 other sub-ensembles when updating

Introduces positive bias into ensemble spread
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lterative EnKF

EnKF struggles in non-linear systems
Variational DA can use outer-loops

EnKF can be iterated by re-running the
ensemble member forecasts with
updated information (Sakov et al, 2012)

Costly
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Comparison with other methods

Increased focus on short-range

Compared with error-breeding or singular vectors
- Slower growth of perturbations
- Useful in data assimilation
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Comparison with EDA

Essentially the same method
- Easier to set up
- Better for coupled modelling

- Update algorithm cheaper, and
very scalable

www. metoffice.gov.uk

- Can’t use hybrid covariances

- Quter loop (iterative EnKF)
expensive

- Either batches of observations,
or observation-space localisation

- Extracts less benefit from
satellite observations
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Other developments

Proposal for hybrid EnKF

Successive covariance localisation




== Met Office

Relaxation to prior perturbations (RTPP)

e . 2 2
Multiplicative inflation can leadto O, > O7;
Therefore apply a relaxation rather than inflation (Zhang et al, 2004)

X x4 (l—ﬂ)(xa" —;)+ ,B(xf " —x_f)

=

< 4 > a0
B 5 P %jﬁﬁ
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Relaxation to prior spread (RTPS)

RTPP mixes analysis and forecast _ — L —
perturbations X 5 x® 4 ﬂ(xa" _Xa)
Forecast perturbations are larger-scale,

more balanced B Qo + (]__ ¢)Ga

Therefore relax the spread, not the
perturbations (Whitaker & Hamill, 2012) O,
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