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+ Tropical analysis uncertainties and the growth of tropical
forecast uncertainties in a global perspective

+ Modelling of the tropical forecast-error covariances

+ Scale-dependent and flow-dependent growth of tropical
forecast errors

+ Impact of model error

4+ Conclusions and outlook




1. Analysis uncertainties and the growth
of forecast uncertainties in IFS




Zonally-averaged ensemble spread in EDA

3-hour ensemble spread in the zonal wind, cy32r3
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Zonally-averaged growth of forecast
uncertainties in ENS
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Global growth of forecast uncertainties

ENS data
Two weeks in May
2015

Ensemble spread in
zonal wind (m/s)
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Global analysis and forecast uncertainties

Initial-state uncertainties are largest in the tropics
How do the forecast uncertainties grow as a function of scale?

How the growth depends on dynamics (balanced versus
unbalanced)?

How the forecast errors in medium range in the mid-latitudes
depend on the tropical analysis uncertainties?

We take a global, 3D view of forecast errors as represented by the
ensemble spread of operational ensemble forecasts of ECMWF




Uncertainties in tropical winds:
ERA Interim vs. MERRA reanalyses

1: ERAI U 5-4-2010 1; MERRA U 5-4-2010
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Uncertainties in tropical Kelvin wave:
ERA Interim vs. MERRA reanalyses
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Uncertainties in tropical Kelvin wave:
ERA Interim vs. MERRA reanalyses
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2. Modelling the tropical forecast-error
covariances




Multivariate decomposition of global data
using the Hough harmonics

Solutions in terms of horizontal and vertical dependencies:

[u' ,v,h1 (A e,0t) = [u,v,h]" (A,@,t) x G(0)

X(1.4,s)=as,X, (1 )G, ()

m=1

X, (I §)=a a c(m)H:(1_j,m)

n=l1 k=-K




Two kinds of Hough harmonic solutions for the
horizontal wave motions
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Meridional structure of Hough functions

HSFs are pre-computed for a
given number of vertical
modes, M

For every m=1,...,M, i.e. for
every D,

Meridional structure for
Hough functions is
computed for a range of the
zonal wavenumbers K,
k=-K,..,0,...,K

and a range of meridional
modes for the balanced,
Nrossgy: @ range of EIG, Ngg,
and a range of WIG, N,
modes.
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History of Hough functions in data
assimilation (2)

+ Flattery, 1970s: NCEP Ol based on the Hough functions

+ D. Parrish, mid 1980s: computed correlations for single point
in the tropics including the impact of KW and MRG waves

Single height observations at EQ Parrish, 1988, AMS proceedings

(h,h), Rossby+MRG (h,u),
Rossby+MRG+KW, Rossby+MRG+KW,
k=1- k=1-




History of Hough functions in data
assimilation (2)

+ ECMWEF, early 1990s: first formulation of 3D-Var used Hough functions

J, = Ve cg Xp AR Xp + Y2 ¢ X Mg %X *+ Ve Xu Ay Xy

. 1 1
Cg IS SEL10 - and cy, to 2(-2) Heckley et al., 1993, ECMWF proceedings
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History of Hough functions in data
assimilation (3)

+ ECMWEF, early 1990s: first formulation of 3D-Var used Hough functions

J, = Ve cg Xp AR Xp + Y2 ¢ X Mg %X *+ Ve Xu Ay Xy

. 1 1
Cg IS SEL10 - and cy, to 2(-2) Heckley et al., 1993, ECMWF proceedings
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Single westerly wind obs at the EQ at 500 hPa




Tropical data assimilation system
including Rossby and IG wave constraints

+ Application of parabolic cylinder functions as the basis functions for
the representation of the background-error covariances

Daley, 1993, Atm.-Ocean; Zagar et al., 2004, QJRMS

J(Ox)=1J, +J.= %SXTBlﬁx +%zf;(yn ~H(X" +8x.)) R™(y.— H(x" + 8x.))

J(2)=3, 4= 7 7+, S0 HOC+ L) R (- HOC L )

X = LSX P, — projection operator on the meridionally
dependent part of equatorial eigenmodes

| = DP.F F—l D — spectral variance density normalization
- yl X .
F — Fourier transform operator




Distribution of tropical forecast-error
variance among equatorial modes
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Impact of the equatorial wave constraint on
analysis increments

Single h observations at the equator

b -All modes lncluded '_ a “No Kelvin mode = |
| Kelvin wave coupling
is decisive for the
structure of analysis
increments near the
equator

EIG waves reduce the
meridional

,,,,, “No EqHG modes | qI: I:Gmode correlation scale, and
= also effect the
mass/wind coupling

Zagar et al., 2004, QIRMS




Impact of the equatorial wave
constraint on analysis increments

Single westerly wind obs at the EQ
Rossby waves Rossby, KW, MRG All waves
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3. Scale-dependent and flow-dependent
growth of tropical forecast errors




Representation of the global error
covariances using Hough functions

VT Z ﬂxf . (ﬂxf)T Estimate of the bkg error from the ensemble
— 1 =1
G, — projection on the vertical structure

© — projection on the meridionally part of
Hough harmonics

D —spectral variance density normalization
F — Fourier transform in the zonal direction

In det(LBL") - % In det(LAL")  Entropy reduction . Fisher, 2003
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Decomposition of the ensemble spread in
balanced and unbalanced (1G) parts
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Short-range forecast error statistics, EDA

12-hr fc range __EIG with KW
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ROT EIG WIG Kelvin waves make about 15%
~52% ~27% ~21% of EIG fc-error variance

Almost half of the variance in short-term forecast errors is associated with the
inertio-gravity modes. EIG dominates over WIG on all scales. Data from July




Flow dependency of the simulated
forecast errorsin EDA
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Short term growth of simulated forecast
errors in EDA in relation to flow

[Variance(12) — Variance(3)] / Variance(3)*100%

In the tropics, the short-range growth is largest in the Kelvin mode
The growth in WIG modes is accompanying the balanced variance
growth in the midlatitudes

Zagar et al., 2013, QIRMS




Flow dependent growth of forecast
uncertainties in ENS
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Growth of the spread w.r.t. initial spread as a
function of the zonal scale
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Growth of the spread w.r.t. initial spread as
a function of zonal scale
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Growth of the spread w.r.t. initial spread as a
function of the zonal scale

b) balanced ensemble spread wrt spread at t=0 ¢) unbalanced ensemble spread wrt spread at t=0
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e-dependent limits of the growth
oread in ENS

Lorenz, 1984 Dalcher and Kalnay, 1987
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Scale and flow dependent representation of
the ensemble reliability
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4. Role of observations and model error in
tropical uncertainties
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Analysis and forecast uncertainties in OSSE
with a perfect model

Data Assimilation Research Testbed (DART), by Jeff Anderson and
collaborators, http://www.image.ucar.edu/DAReS/DART/

Spectral T85 Community Atmosphere Model, CAM 4 physics

Long spin-up (from 1 Jan 2008) with the observed SST 4% '
to reproduce nature run ( ‘truth’) o

Preparation of the observations from the nature ryfis§

Preparation of the homogeneous observing
network (A~920 km)

Assimilation cycle during three months
(Aug-Oct) in 2008

No inflation

Zagar et al., 2016, MWR




Short-range global forecast errors in the
perfect-model EnKF framework

pr, zonal wind pr-po)/pr, zonal wind
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Perfect model vs. NWP model

Perfect model exp ECMWF EDA
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Data assimilation is not efficient in reducing the tropical large scale
spread, not even in the perfect model framework




meridional mode
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Distribution of the variance in analysis ensmeble looks very similar.
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Scale-dependency of the 12-hr forecast
error variances in EnKF with a perfect model

c) Westward 1G
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As expected, largest variance is in synoptic scales and balanced
modes (mid-latitudes) and in the large-scale Kelvin wave

Zagar et al., 2016, MWR
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Data assimilation efficiency: variance reduction

Efficiency = (po-pr)/pr
ROSSBY
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The assimilation is most efficient in synoptic scales,

for both balanced and IG motions
Zagar et al., 2016, MWR




Data assimilation efficiency: variance reduction

Efficiency = variance
reduction as a function of
zonal wavenumber

The assimilation is most
efficient in synoptic scales,
for both balanced and IG
motions but much more
efficient for balanced.
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Impact of the covariance localization radius
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Summary

+ Tropics are characterized by largest analysis uncertainties and largest
growth of forecast uncertainties during the first 24-36 hours in the IFS
system.

+ The uncertainties are on average largest on the largest scales.

+ Uncertainties are flow dependent. Uncertainties in wind and geo.
height fields in the tropics are balanced about 50%.

+ Maximal short-range forecast uncertainties in the tropical upper
troposphere have not been reduced using a perfect model with an
EnKF. Covariance localization radius is very important in the tropics.

+ Introducing a mass-wind constraint based on large-scale equatorial
waves may be helpful.




Thank you for your attention!
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MODESSOFTWARE

MODES software v1.0 has been released

Modal view of atmospheric circulation

MODES focuses on the representation of the inertio-gravity circulation in numerical weather prediction madels, reanalyses,
ensemble prediction systems and climate simulations. The project methodology relies on the decomposition of global
circulation in terms of 3D orthogonal normal-mode functions. It allows quantification of the role of inertio-gravity waves in
atmospheric varibility across the whole spectrum of resolved spatial and temporal scales.

MORE ABOUT MODES |




