
Parallelization of the FV3 dycore
for GPU and MIC processors

Mark Govett, Jim Rosinski, Jacques
Middlecoff, Yonggang Yu, Daniel

Fiorino, Lynd Stringer

Outline

• Transition from NIM to FV3

• Performance Portability

– NIM performance & scaling

– FV3 parallelization

NIM Achievements

• Designed for fine-grain parallel
– Icosahedral uniform grid
– Lookup table to access neighbor cells

• Performance portable with a single source code
– OpenACC for GPU
– OpenMP for CPU, MIC
– F2C-ACC compiler improved OpenACC compilers

• Enabled fair comparison between CPU, GPU & MIC
– Single source code
– Bitwise exact between CPU, GPU & MIC
– Optimized for all architectures
– Same generation hardware, standard chips

• Benchmark code for NOAA fine-grain procurement

Device Performance

49.8

26.8

20

14.3
12

23.6

15.1 13.9

7.8
4.8

16

6.1

0

10

20

30

40

50

60

2010/11 2012 2013 2014 2016

ru
n

ti
m

e
 (

se
c)

CPU GPU MIC

NIM dynamics
240 KM resolution

Device

Cray: CS-Storm Node
• Up to 8 GPUs / node
• QPI between CPU sockets
• Single Infiniband link
• GPU direct: P2P or RDMA

FDR: 40 Gb/sec
QDR: 54 Gb /sec
EDR: 100 Gb /sec

Weak Scaling, CS Storm

• NIM 30 KM resolution

• 40 Pascal P100s, 2 – 8 GPUs / node

• GPUdirect = false

7.5 7.5 7.6 7.5

4.9 4.9 6.1 7.9

0

5

10

15

20

2 4 5 8

R
u

n
ti

m
e

 (
se

c)

GPUs / node

Communications

Computation

Num Nodes 20 10 8 5

Strong Scaling, CS Storm
• 5 – 40 CPU nodes,
• 2 Pascal GPUs/ per node
• GPUdirect = false

28.7

14.6
7.5

3.9

9.5

6.8

4.9

3.6

0

5

10

15

20

25

30

35

40

45

10 20 40 80

R
u

n
ti

m
e

 (
se

c)

Number of GPUs:

Strong Scaling
NIM – 30 KM Resolution

NVIDIA Pascal

Communications

Compute

MPI Task5

Spiral Grid Optimization: NIM
• Eliminate MPI message packing / unpacking by

ordering grid points
• Gave a 35% speedup in dynamics runtime using 16 MPI

tasks / GPU (Middlecoff, 2015)

Interior Points
MPI Task 5

Interior Points
MPI Task 6

Interior Points
MPI Task 4

MPI Task 2

Interior Points Halo Points (received)

Task4 Task6Task8 Task3MPI Task5

M
P

I R
ec

ei
ve

M
P

I R
eceive

M
P

I S
en

d

Data Storage Layout
for MPI Task 5

Halo Points (received)

M
P

I S
en

d

From NIM to FV3
Cube Sphere (FV3)

• 6 faces, 1 MPI rank per face

• Edge and corner points

• Direct access: i-j-k ordering

Icosahedral (NIM)

• Uniform Grid

• No special grid points

• Indirect access: k–I ordering

Graphic courtesy
of Peter Lauritzen (NCAR)

Fine-grain Parallelization of FV3
• Early work by NVIDIA demonstrated poor

performance with original code

• Goal is to adapt the FV3 to run on GPU, MIC
– Expose sufficient parallelism

– Minimize code changes

– Maintain single source code

• Achieve performance portability
– OpenMP for CPU, MIC

– OpenACC for GPU

• Bitwise exact results between CPU, GPU, MIC

GPU Parallelization

• C_SW (shallow water)

– Push “k” loop into routines to expose more
parallelism for GPU

• Little benefit for MIC, CPU,

– Two test cases built

• I – J – K ordering

• K – I – J ordering

– Optimizations for CPU, GPU, MIC

• Evaluation of results

• Performance benefit versus impact to code

C_SW Performance
• 2013 IvyBridge, 2013 Kepler K40, 2016 KNL

• Execution time for a single call to C_SW

45 42
29

15

67

18

13
7

4

3

10

3

20

21

9

3

32

50

0

20

40

60

80

100

120

CPU baseline CPU i-j-k GPU i-j-k KNL i-j-k CPU k-i-j GPU k-i-j

R
u

n
 t

im
e

 (
m

s)

c_sw-partial divergence_corner d2a2c_vect

C_SW Call Tree
- divergence_corner
- d2a2_vect
- c_sw_partial

C_SW Conclusions - Part 1

• K-I-J variant involves lots of changes with little
performance benefit

– c_sw_partial, divergence k-i-j gave 1.5X benefit over
i-j-k, warrants further investigation

• I-J-K variant resulted in a small improvement in
CPU performance

– Few changes to the code

• Promote 2D arrays to 3D

• Add K loop

• Minor changes to OpenMP directives

• dyn_core (100%)
– c_sw (13%)

• d2a2_vect
• divergence_corner

– update_dz_c (2%)
– riem_solver_c (14%)
– d_sw (38%)

• FV_TP_2D (37%)
– copy_corners (0.1%)
– xppm0 (14%)
– yppm0 (14%)

• xtp_v
• xtp_u

– update_dz_d (10%)
• FV_TP_2D (37%)

– riem_solver3 (1%)
– pg_d (5%)

• nh_p_grad (5%)

– tracer_2d (6%)
– remapping (6%)

FV3 dynamics

Notes
• Model configured for non-

hydrostatic, non-nested,
with 10 tracers

• Runtime percentages are
for Haswell CPU

• Percentages represent
aggregate values

• Remapping is done once
every 10 timesteps

• Current efforts are shaded

momo

module m1 !Poor Performance, not enough shared memory
integer, parameter :: isd = -2, ied = 195, jsd = -2, jed = 195
integer, parameter :: is = 1, ie = 192, js = 1, je = 192
integer, parameter :: npz = 128

contains
subroutine s1(a)

real,intent(INOUT) :: delpc(isd:ied, jsd:jed, npz) delpc,… ! global arrays
real, dimension(is-1:ie+1, js-1:je+2) :: fy, fy1, fy2,fx, fx1,fx2 ! local arrays

!$acc kernels
!$acc loop private(fx,fx1,fx2,fy,fy1,fy2)

do k = 1, npz ! gang loop
!$acc loop collapse(2)

do j=js-1,je+2 ! vector loop
do i=is-1,ie+1 ! vector loop

fy1(i,j) = delp(i,j-1,k); fy(i,j) = pt(i,j-1,k); fy2(i,j) = w(i,j-1,k)
enddo

enddo

! additional calculations with fx,fx1,fx2, handling of corner points
! dependencies on fx1, fy1, ect require synchronization here

do j=js-1,je+1
do i=is-1,ie+1

delpc(i,j,k) = delp(i,j,k) + (fx1(i,j) - fx1(i+1,j) + fy1(i,j) - fy1(i,j+1)) * rarea(i,j)

Tiling / Cache Blocking
• Increase utilization of GPU shared / cache memory

– 48 / 16KB per multiprocessor

• Increased complexity of code
– Add chunk loops, indexing, etc

• Gave 3X performance boost for simple test case
– Testing in c_sw

do j=1, 192 ! worker loop
do i=1,192 ! vector loop

do j=1, 192, jchunk !chunk loop
do i=1,192, ichunk !chunk loop

do jx = 1, jchunk !tile loop
do ix = 1, ichunk !tile loop

i = ic + ix – 1; j = jc +jx -1

Conclusion
• NIM work has ended

– Using NIM for performance & scaling
• Testing on KNL, Pascal chips

– Apply knowledge toward FV3
• Serial, parallel performance, portability

• FV3 parallelization is going fairly well
– Goal is single source code, performance

portability on CPU, GPU & MIC

– Modifying code to improve performance
• Push “k” loop into subroutines

• OpenACC parallelization using PGI compiler

• Exploring optimizations including tiling

