Parallelization of the FV3 dycore
for GPU and MIC processors

Mark Govett, Jim Rosinski, Jacques
Middlecoff, Yonggang Yu, Daniel
Fiorino, Lynd Stringer

Outline

* Transition from NIM to FV3
* Performance Portability

— NIM performance & scaling
— FV3 parallelization

NIM Achievements

e Designed for fine-grain parallel
— lcosahedral uniform grid
— Lookup table to access neighbor cells
* Performance portable with a single source code
— OpenACC for GPU
— OpenMP for CPU, MIC
— F2C-ACC compiler improved OpenACC compilers
* Enabled fair comparison between CPU, GPU & MIC
— Single source code
— Bitwise exact between CPU, GPU & MIC
— Optimized for all architectures
— Same generation hardware, standard chips

& Benchmark code for NOAA fine-grain procurement

"

3 i

Device Performance

60

o NIM dynamics
240 KM resolution

40

Device
w CPU mGPU MIC

runtime (sec)
w
o

20 -
10 -
0 .
2010/11 2012 2013 2014 2016
i Year CPU:2sockets Cores GPU Cores ~MIC cores
: 2010/11 Westmere 12 Fermi 448
;2012 SandyBridge 16 Kepler K20x 2688
P 2013 IvyBridge 20 Kepler K40 2880 Knights Corner 61
: 2014 Haswell 24 Kepler K80 4992 N
2018 e BTORAWELL LU .o S 3584Knights Landing . 08

Cray: CS-Storm Node

* Upto 8 GPUs / node FDR: 40 Gb/sec
* QPI between CPU sockets o oy foee

* Single Infiniband link
e GPU direct: P2P or RDMA

) IB System
Network

[72)
=
° &
NS
.E%
>

=3
=
o

Weak Scaling, CS Storm

* NIM 30 KM resolution

e 40 Pascal P100s, 2 — 8 GPUs / node

* GPUdirect = false ore,

20 /I'h!};ary

W Communications

w Computation

[N
92

Runtime (sec)
_
o

Ul

0

. GPUs/node 4 5
@ Num Nodes 20 0 8

Strong Scaling, CS Storm

e 5-40CPU nodes,
e 2 Pascal GPUs/ per node
 GPUdirect = false

45

40 Strong Scaling 'ol'e/,
35 NIM - 30 KM Resolution ,h/,-’ar
NVIDIA Pascal y

i

N
92
|

u Communications

w Compute

=
92}
|

Runtime (sec)
N
o
I

=
o O
|

40
Number of GPUs:

F ,
N 1
H v
E &
B -
T ouea B "1.

Spiral Grid Optimization: NIM

* Eliminate MPI message packing / unpacking by
ordering grid points

* Gave a 35% speedup in dynamics runtime using 16 MPI
tasks / GPU (Middlecoff, 2015)

Halo Points (received)
MPI Task 2]

2\ N/
.) ' -
o NSl M-~~~ »
% Cp==-== > 0000 &’ ¥
N d =5 N
= = [
Interior Points 2 Interior Points E Interior Points
MPI Task 4 EI MPI Task 5 3 > MPI Task 6
vE =
o =
o,
|
€=-==== T
K NZ
L ™\IPI Task 8
Data Storage Layout
for MPI Task 5 Interior Points ™. Halo'Points (received)

MPI Task5 Task4 Task8 Task6

From NIM to FV3

Cube Sphere (FV3) Icosahedral (NIM)
* 6 faces, 1 MPI rank per face * Uniform Grid
 Edge and corner points * No special grid points

* Direct access: i-j-k ordering ¢ Indirect access: k-l ordering

I
D...

NIXSY.STEMSIDIVISION,

Fine-grain Parallelization of FV3

* Early work by NVIDIA demonstrated poor
performance with original code
e Goalis to adapt the FV3 to run on GPU, MIC

— Expose sufficient parallelism
— Minimize code changes
— Maintain single source code

* Achieve performance portability
— OpenMP for CPU, MIC
— OpenACC for GPU

Bitwise exact results between CPU, GPU, MIC

GPU Parallelization

e C_ SW (shallow water)

— Push “k” loop into routines to expose more
parallelism for GPU

* Little benefit for MIC, CPU,
— Two test cases built

* |-J—Kordering
e K—I1—Jordering
— Optimizations for CPU, GPU, MIC

e Evaluation of results
* Performance benefit versus impact to code

e
\-@H
3 i

C_SW Performance

_ C SW Call Tree
e 2013 IvyBridge, 2013 Kepler K40, 2016 KNL _ divergence_corner
* Execution time for a single call to C_SW - d2a2_vect
120 - c_sw_partial
100
32

(e}
o

Run time (ms)

N
o

20 -

CPU baseline CPU i-j-k GPU i-j-k KNL i-j-k CPU k-i-j

W c_sw-partial W divergence_corner d2a2c_vect

C SW Conclusions - Part 1

e K-I-J variant involves lots of changes with little
performance benefit
— c_sw_partial, divergence k-i-j gave 1.5X benefit over
i-j-k, warrants further investigation
* |-J-K variant resulted in a small improvement in
CPU performance

— Few changes to the code

* Promote 2D arrays to 3D
 Add K loop
* Minor changes to OpenMP directives

e
\-@H
3 i

FV3 dynamics

 dyn_core (100%)
— c sw (13%)

Notes
e d2a2_vect _
° divergence_corner i MOdEl COangurEd for Nnon-
— update dz_c (2%) hydrostatic, non-nested,
— riem_solver ¢ (14%) with 10 tracers
— d_sw (38%) * Runtime percentages are
e for Haswell CPU
— copy_corners (0.1%)
— xppm0 (14%) * Percentages represent
. xtp. Vyppmo e aggregate values
. Xxtp_u Remapping is done once
— update dz_ d (10%) every 10 timesteps
* FV_TP_2D (37%) Current efforts are shaded
— riem_solver3 (1%)
— pg_d (5%)

* nh_p grad (5%)
— tracer_2d (6%)
— remapping (6%)

module m1 IPoor Performance, not enough shared memory
integer, parameter :: isd =-2, ied =195, jsd = -2, jed = 195
integer, parameter:: is = 1, ie= 192,js = 1,je =192
integer, parameter :: npz = 128
contains
subroutine s1(a)
real,intent(INOUT) :: delpc(isd:ied, jsd:jed, npz) delpc,... I global arrays
real, dimension(is-1:ie+1, js-1:je+2) :: fy, fyl, fy2,fx, fx1,f/x2 ! local arrays
ISacc kernels
ISacc loop private(fx,fx1,fx2,fy,fyl,fy2)
dok=1,npz !gangloop
ISacc loop collapse(2)

do j=js-1,je+2 I vector loop
do i=is-1,ie+1 ! vector loop
fy1(i,j) = delp(i,j-1,k); ~ fy(i,j) = pt(i,j-1,k); fy2(ij) = w(ij-1,k)
enddo
enddo

I additional calculations with fx,fx1,fx2, handling of corner points
I dependencies on fx1, fyl, ect require synchronization here
do j=js-1,je+1
do i=is-1,ie+1

delpc(i,j,k) = delp(i,j,k) + (fx1(i,j) - ix2(i+1,j) + fy1(i,j) - fy1(i,j+1)) * rarea(i,;)

Tiling / Cache Blocking

* Increase utilization of GPU shared / cache memory
— 48 / 16KB per multiprocessor

* |ncreased complexity of code
— Add chunk loops, indexing, etc

e Gave 3X performance boost for simple test case
— Testing in c_sw

do j=1, 192, jchunk Ichunk loop
do i=1,192, ichunk Ichunk loop
do jx =1, jchunk Itile loop
do j=1, 192 | worker loop do ix =1, ichunk Itile loop
doi=1,192 ! vector loop i=ic+ix—1; j=jc+jx-1

N |

e
\-@H
3 i

Conclusion

NIM work has ended

— Using NIM for performance & scaling
* Testing on KNL, Pascal chips

— Apply knowledge toward FV3
* Serial, parallel performance, portability

FV3 parallelization is going fairly well

— Goal is single source code, performance
portability on CPU, GPU & MIC

— Modifying code to improve performance
* Push “k” loop into subroutines

* OpenACC parallelization using PGl compiler
* Exploring optimizations including tiling

