
T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

Thomas C. Schulthess

1

Exascale computing: endgame or new
beginning for climate modelling

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

Operational system for NWP at CSCS

2

Albis & Lema (in production through 3/2016) New system: Kesch & Escha

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

MeteoSwiss’ performance ambitions

3

1

5

10

15

20

25

30

35

40

Constant budget for investments and operations

24
x Ensemble with multiple forecasts

Grid 2.2 km ! 1.1 km

10
x

Requirements from MeteoSwiss
Data assimilation6x

We need a 40x improvement between 2012 and 2015 at constant cost

?

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 4

September 15, 2015

Today’s Outlook: GPU-accelerated Weather Forecasting
John Russell

“Piz Kesch”

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 5

2012

2013

2014

2015

2016

2017+
Summit Aurora

Lightweight coresGPU - accelerated hybrid

DARPA HPCS

Tsuname-3.0 U. Tokyo  
&Tsukuba

2011

post-K
Multi-core

MeteoSwiss

5

TaihuLight

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 6

State of the art implementation
of new system for MeteoSwiss

• New system needs to be installed Q3/2015

• Assuming 2x improvement in per-socket performance: 
~20x more X86 sockets would require 30 Cray XC cabinets

Current Cray XC30/XC40 platform  
(space for 40 racks XC)

New system for Meteo Swiss if we
build it like the German Weather
Service (DWD) did theirs, or UK Met
Office, or ECMWF … (30 racks XC)

Albis & Lema: 3 cabinets Cray XE6 installed Q2/2012

Thinking inside the box was not a good option!
CSCS machine room

6

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

COSMO-OPCODE:

7

% Code Lines (F90) % Runtime

Runtime based 2 km production model 
 of MeteoSwiss

Original code (with OpenACC for GPU) Rewrite in C++ (with CUDA backend for GPU)

‣monolithic Fortran 90 code
‣ 250,000 lines of code

a legacy code migration project

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

How we solved the problem

8

1

5

10

15

20

25

30

35

40

Constant budget for investments and operations

Grid 2.2 km ! 1.1 km

24
x Ensemble with multiple forecasts

Data assimilation

10
x

1.7x from software refactoring (old vs. new implementation on x86)

2.8x Mathematical improvements (resource utilisation)

2.8x Moore’s Law on x86

2.3x Change in architecture (CPU ! GPU)

1.3x additional processors

Requirements from MeteoSwiss

6x

Investment in software allowed mathematical improvements and change in architecture

There is no silver bullet!

Bonus: reduction in power!

T. Schulthess25 Years CSCS, Lugano, Wednesday October 19, 2016 9

$500,000,000
$2,000,000,000

$13,000
Source: Andy Keane @ ISC’10

Why commodity processors?

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 10

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

The end of Denard Scaling

11

L/�

W/�

t
ox

/�

xd/�

�⇤NA ⇠ 1/�2

⇠ constant

n+ n+

source drain

GATE

WIRING

p substrate, doping

Voltage, V/�

SCALING
Voltage:
Oxide:
Wire width:
Gate Width:
Diffusion:
Substrate:

CONSEQUENCE:
Higher density:
Higher speed:
Power/ckt:
Power density:

V/�
t
ox

/�

W/�

L/�

�⇤NA

xd/�

⇠ ↵2

⇠ ↵

Oxide layer  
thickness ~1nm

Source: Ronald Luijten, IBM-ZRL

The end of Robert H. Dennard (1974)

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 12

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

Who consumes how much energy on a 28nm processor

13

•64 bit floating point unit: 20 pJ

•256-bit access 8kB SRAM: 50 pJ

•256-bit bus across die: 1,000 pJ

•Read/write to DRAM: 16,000 pJ

20 mm

Source: Bill Dally, 2011By a wide margin, most energy
is spend in moving data on the
die and to memory

Developing algorithms that
maximise data locality should
be THE TOP PRIORITY

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 14

Source: Rajeeb Hazra’s (HPC@Intel) talk at SOS14, March 2010

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

“Piz Daint”

15

Cray XC30 with 5272 hybrid, GPU accelerated compute nodes

Compute node:
> Host: Intel Xeon E5 2670 (SandyBridge 8c)
> Accelerator: One NVIDIA K20X GPU (GK110)

13 m (~0.43 µs)

2.5 GHz (~0.38 ns)

0.73 GHz (~1.4ns)

Latency (μs) Bandwidth (GB/s)

Aries chip 1.28 9.89

Within Chassis 1.61 9.65

Between Chassis 1.58 9.82

Between Groups 2.53 9.63

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

Architectural diversity is here to stay, because it is
a consequence of the dusk of CMOS scaling

(Moore’s Law)

16

What are the implications?

Complexity in software is one,  
but we don’t understand all implications

Physics of the computer matters more than ever

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 17

velocities

pressure

temperature

water

turbulence

physics et al.
tendencies vertical adv. water adv.horizontal adv.3x fast wave solver~10x1x

Timestep
explicit (leapfrog)implicit (sparse solver)explicit (RK3)implicit (sparse)

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

Stencil example: Laplace operator in 2D

18

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 19

1. Loop-logic defines stencil application domain and order
2. Stencil defines the operator to be applied

do k = kstart, kend
 do j = jstart, jend
 do i = istart, iend
 lap(i, j, k) = -4.0 * data(i, j , k) + &
 data(i+1, j, , k) + data(i-1, j , k) + &
 data(i , j+1, k) + data(i , j-1, k)
 end do
 end do
end do

Two main components of an operator on a structured grid

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 20

IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

 Param<lap, cInOut>(lapfield),

 Param<data, cIn>(datafield)

),

 concatenate_sweeps(

 define_sweep<KLoopFullDomain>(

 define_stages(

 StencilStage<Laplace, IJRangeComplete>()

)

)

)

);

stencil.Apply();

enum { data, lap };

template<typename TEnv>

struct Laplace

{

 STENCIL_STAGE(Tenv)

 STAGE_PARAMETER(FullDomain, data)

 STAGE_PARAMETER(FullDomain, lap)

 static void Do()

 {

 lap::Center() =

 -4.0 * data::Center() +

 data::At(iplus1) +

 data::At(iminus1) +

 data::At(jplus1) +

 data::At(jminus1);

 }

};

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 21

enum { data, lap };

template<typename TEnv>

struct Laplace

{

 STENCIL_STAGE(Tenv)

 STAGE_PARAMETER(FullDomain, data)

 STAGE_PARAMETER(FullDomain, lap)

 static void Do()

 {

 lap::Center() =

 -4.0 * data::Center() +

 data::At(iplus1) +

 data::At(iminus1) +

 data::At(jplus1) +

 data::At(jminus1);

 }

};

IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

 Param<lap, cInOut>(lapfield),

 Param<data, cIn>(datafield)

),

 concatenate_sweeps(

 define_sweep<KLoopFullDomain>(

 define_stages(

 StencilStage<Laplace, IJRangeComplete>()

)

)

)

);

stencil.Apply();

Stencil Loop logic

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 22

Architecture dependent backend

• The same user-level code can be
compiled with different, architecture
dependent backends

• multi-core CPU (x86) – SIMD
• kij-storage
• ij-blocking
• Coarse: OpenMP theads
• Fine: vectorisation by compiler

• GPU (Tesla) – SIMT
• ijk-storage
• Coarse: CUDA thread blocks
• Fine: CUDA threads
• software managed caching

STELLA backends

•  The same high-level user code can be
compiled using different backends

•  CPU (x86 multi-core)
•  kij-storage
•  ij-blocking
•  Coarse: OpenMP threads
•  Fine: vectorization by compiler

•  GPU (NVIDIA)
•  ijk-storage
•  Coarse: CUDA thread blocks
•  Fine: CUDA threads
•  software managed caching

A single switch
chooses the

STELLA backend

Horizontal IJ-plane

Block0 Block1

Block2 Block3

Coarse-grained parallelism"

Fine-grained
parallelism
(vectorization)"

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 23

References and Collaborators

• Peter Messmer and his team at the NVIDIA co-design lab at ETH Zurich
• Teams at CSCS and Meteo Suisse, group of Christoph Schaer @ ETH Zurich
• O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco, A. Arteaga, T. C. Schulthess,
“Towards a performance portable, architecture agnostic implementation strategy for weather
and climate models”, Supercomputing Frontiers and Innovations, vol. 1, no. 1 (2014), see superfri.org

• G. Fourestey, B. Cumming, L. Gilly, and T. C. Schulthess, “First experience with validating and
using the Cray power management database tool”, Proceedings of the Cray Users Group 2014
(CUG14) (see arxiv.org for reprint)

• B. Cumming, G. Fourestey, T. Gysi, O. Fuhrer, M. Fatica, and T. C. Schulthess, “Application centric
energy-efficiency study of distributed multi-core and hybrid CPU-GPU systems”, Proceedings of
the International Conference on High-Performance Computing, Networking, Storage and Analysis,
SC’14, New York, NY, USA (2014). ACM

• T. Gysi, C. Osuna, O. Fuhrer, M. Bianco and T. C. Schulthess, “STELLA: A domain-specific tool for
structure grid methods in weather and climate models”, to be published in Proceedings of the
International Conference on High-Performance Computing, Networking, Storage and Analysis, SC’15,
New York, NY, USA (2015). ACM

http://superfri.org
http://arxiv.org

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

COSMO: old and new (refactored) code

24

main (current / Fortran)

physics
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics
(Fortran) 

with OpenMP /
OpenACC

dynamics (C++)

MPI or whatever

system

Generic
Comm.
Library

boundary
conditions &
halo exchg.

stencil library

X86 GPU

Shared
Infrastructure

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 25

Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 26

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 27

Physical model

Mathematical description

Algorithmic description

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering
Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 28

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

H = −t
∑

⟨ij⟩,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Algorithmic description
Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k

28

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 29

Physical model

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 30

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Physical model

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 31

Physical model

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessSimons Foundation Lectures, Frontier of Data Science, New York, Wednesday, May 11, 2016 32

Science applications using a descriptive
and dynamic developer environment

Physical model
Mathematical description

Algorithmic description

Imperative code

Architecture 1

Compiler frontend

Optimisation / low-level libraries / runtime

Architecture specific backends

Architecture 2 Architecture N…

Multi-disciplinary  
co-design of tools,
libraries,
programming
environment

dynamic environment 
for model develop.

tools for 
high-performance  

scientific computing

Schulthess, Nature Physics, vol 11, 369-373 (2015)

iPython/notebook 
JUPYTER

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

The good news

33

C++ 11, 14, HPX-3, … 17, 20, …

C++ standard is evolving quickly and implementations follow!

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 34

Who will pay for the implementation of
Fortran, OpenACC, OpenMP, …?

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 35

Source: Andy Keane @ ISC’10

for 8 GPUs, or $16k a piece

$500,000,000
$2,000,000,000

$13,000

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 36

T. Schulthess17th Workshop on HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016 37

Areas of interest include (but are not limited to):

-	 The	use	of	advanced	computing	systems	for	large-scale	scientific	applications
-	 Implementation	strategies	for	science	applications	in	energy-efficient	computing	
 architectures
-	 Domain-specific,	languages,	libraries	or	frameworks
-	 The	integration	of	large-scale	experimental	and	observational	scientific	data	and	high-
 performance data analytics and computing
-	 Best	practices	for	sustainable	software	development	and	scientific	application	
 development

Committee Chairs
Jack	Wells	(Oak	Ridge	National	Laboratory,	USA)
Torsten	Hoefler	(ETH	Zurich,	Switzerland)

Submission Guidelines
We	invite	papers	of	5-10	pages	in	length,	which	will	be	reviewed	double	blind.	Full	submis-
sions	guidelines	can	be	found	at	www.pasc17.org.	

-	Submissions	close:	12 December 2016
-	First	review	notification:	31 January 2017
-	Revised	submissions	close:	1 March 2017
-	Final	acceptance	notification:	11 April 2017

Conference Participation and Proceedings
Accepted	manuscripts	will	be	published in the ACM Digital Library	on	the	first	day	of	the	
conference.	Authors	will	be	given	30-minute	presentation	slots	at	the	conference,	grouped	
in	topically	focused,	parallel	sessions.

Post-Conference Journal Submission
Following	the	conference,	authors	will	have	the	opportunity to develop their papers for
publication in a relevant, computationally focused, domain-specific journal.

Authors	thus	stand	to	benefit	from	the	rapid	and	broad	dissemination	of	results	afforded	
by	the	conference	venue	and	associated	proceedings,	and,	from	the	impact	associated	with	
publication	in	a	high-quality	scientific	journal.	

The Platform for Advanced Scientific Computing (PASC) invites submissions
for the PASC17 Conference, co-sponsored by the Association for Computing
Machinery (ACM) and SIGHPC, which will be held at the Palazzo dei Congressi in
Lugano, Switzerland, from June 26 to 28, 2017.

PASC17	is	an	interdisciplinary	event	in	high	performance	computing	that	brings	together	
domain	science,	applied	mathematics	and	computer	science	-	where	computer	science	is	
focused	on	enabling	the	realization	of	scientific	computation.

We	are	soliciting	high-quality	contributions	of	original	research	relating	to	high	performance	
computing	in	eight	domain-specific	tracks:

pasc17.pasc-conference.org

CLIMATE &	WEATHER

SOLID EARTH DYNAMICS

LIFE SCIENCES

CHEMISTRY	&	MATERIALS

PHYSICS

COMPUTER SCIENCE & APPLIED MATHEMATICS

ENGINEERING

EMERGING DOMAINS (SPECIAL TOPIC: PRECISION MEDICINE)

Call for Papers

