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Exascale computing: endgame or new 
beginning for climate modelling
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Operational system for NWP at CSCS
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Albis & Lema (in production through 3/2016) New system: Kesch & Escha
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MeteoSwiss’ performance ambitions
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We need a 40x improvement between 2012 and 2015 at constant cost

?
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September 15, 2015

Today’s Outlook: GPU-accelerated Weather Forecasting
John Russell

“Piz Kesch”
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State of the art implementation 
of new system for MeteoSwiss

• New system needs to be installed Q3/2015 

• Assuming 2x improvement in per-socket performance: 
~20x more X86 sockets would require 30 Cray XC cabinets

Current Cray XC30/XC40 platform  
(space for 40 racks XC)

New system for Meteo Swiss if we 
build it like the German Weather 
Service (DWD) did theirs, or UK Met 
Office, or ECMWF … (30 racks XC)

Albis & Lema: 3 cabinets Cray XE6 installed Q2/2012

Thinking inside the box was not a good option!
CSCS machine room

6
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COSMO-OPCODE: 
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% Code Lines (F90) % Runtime

Runtime based 2 km production model 
 of MeteoSwiss

Original code (with OpenACC for GPU) Rewrite in C++ (with CUDA backend for GPU)

‣monolithic Fortran 90 code 
‣ 250,000 lines of code

a legacy code migration project
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How we solved the problem
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1.7x from software refactoring (old vs. new implementation on x86)

2.8x Mathematical improvements (resource utilisation)

2.8x Moore’s Law on x86

2.3x Change in architecture (CPU ! GPU)

1.3x additional processors

Requirements from MeteoSwiss

6x

Investment in software allowed mathematical improvements and change in architecture 

There is no silver bullet!

Bonus: reduction in power!
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$500,000,000 
$2,000,000,000 

$13,000
Source: Andy Keane @ ISC’10

Why commodity processors?
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The end of Denard Scaling
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The end of Robert H. Dennard (1974)
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Who consumes how much energy on a 28nm processor
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•64 bit floating point unit: 20 pJ

•256-bit access 8kB SRAM:    50 pJ

•256-bit bus across die:  1,000 pJ

•Read/write to DRAM:     16,000 pJ

20 mm

Source: Bill Dally, 2011By a wide margin, most energy 
is spend in moving data on the 
die and to memory

Developing algorithms that 
maximise data locality should 
be THE TOP PRIORITY
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Source: Rajeeb Hazra’s (HPC@Intel) talk at SOS14, March 2010
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“Piz Daint”
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Cray XC30 with 5272 hybrid, GPU accelerated compute nodes

Compute node: 
> Host: Intel Xeon E5 2670 (SandyBridge 8c) 
> Accelerator: One NVIDIA K20X GPU (GK110)

13 m (~0.43 µs)

2.5 GHz (~0.38 ns)

0.73 GHz (~1.4ns)

Latency (μs) Bandwidth (GB/s)

Aries chip 1.28 9.89

Within Chassis 1.61 9.65

Between Chassis 1.58 9.82

Between Groups 2.53 9.63
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Architectural diversity is here to stay, because it is 
a consequence of the dusk of CMOS scaling 

(Moore’s Law)

16

What are the implications?

Complexity in software is one,  
but we don’t understand all implications

Physics of the computer matters more than ever
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velocities

pressure

temperature

water

turbulence

physics et al.  
tendencies vertical adv. water adv.horizontal adv.3x fast wave solver~10x1x

Timestep
explicit (leapfrog)implicit (sparse solver)explicit (RK3)implicit (sparse)



T. Schulthess17th Workshop on  HPC in Meteorology @ ECMWF, Reading, Wednesday October 26, 2016

Stencil example: Laplace operator in 2D
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lap(i,j,k) = –4.0 * data(i,j,k) + 
    data(i+1,j,k) + data(i-1,j,k) +  
    data(i,j+1,k) + data(i,j-1,k);
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1. Loop-logic defines stencil application domain and order
2. Stencil defines the operator to be applied 

do k = kstart, kend
  do j = jstart, jend
    do i = istart, iend
      lap(i, j, k) = -4.0 * data(i,   j  , k) + &
        data(i+1, j, , k) + data(i-1, j  , k) + &
        data(i  , j+1, k) + data(i  , j-1, k)
     end do
  end do
end do 

Two main components of an operator on a structured grid
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IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

    Param<lap, cInOut>(lapfield),

    Param<data, cIn>(datafield)

),

  concatenate_sweeps(

    define_sweep<KLoopFullDomain>(

      define_stages(

        StencilStage<Laplace, IJRangeComplete>()

      )

    )

  )

);

stencil.Apply();

enum { data, lap };

template<typename TEnv>

struct Laplace

{

  STENCIL_STAGE(Tenv)

  STAGE_PARAMETER(FullDomain, data)

  STAGE_PARAMETER(FullDomain, lap)

 

  static void Do()

  {

    lap::Center() =

      -4.0 * data::Center() +

      data::At(iplus1) +

      data::At(iminus1) +

      data::At(jplus1) +

      data::At(jminus1);

  }

};  
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enum { data, lap };

template<typename TEnv>

struct Laplace

{

  STENCIL_STAGE(Tenv)

  STAGE_PARAMETER(FullDomain, data)

  STAGE_PARAMETER(FullDomain, lap)

 

  static void Do()

  {

    lap::Center() =

      -4.0 * data::Center() +

      data::At(iplus1) +

      data::At(iminus1) +

      data::At(jplus1) +

      data::At(jminus1);

  }

};  

IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

    Param<lap, cInOut>(lapfield),

    Param<data, cIn>(datafield)

),

  concatenate_sweeps(

    define_sweep<KLoopFullDomain>(

      define_stages(

        StencilStage<Laplace, IJRangeComplete>()

      )

    )

  )

);

stencil.Apply();

Stencil Loop logic
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Architecture dependent backend

• The same user-level code can be 
compiled with different, architecture 
dependent backends 

• multi-core CPU (x86) – SIMD 
• kij-storage 
• ij-blocking 
• Coarse: OpenMP theads 
• Fine: vectorisation by compiler 

• GPU (Tesla) – SIMT 
• ijk-storage 
• Coarse: CUDA thread blocks 
• Fine: CUDA threads 
• software managed caching

STELLA backends 

•  The same high-level user code can be 
compiled using different backends 

•  CPU (x86 multi-core) 
•  kij-storage 
•  ij-blocking 
•  Coarse: OpenMP threads 
•  Fine: vectorization by compiler 

•  GPU (NVIDIA) 
•  ijk-storage 
•  Coarse: CUDA thread blocks 
•  Fine: CUDA threads 
•  software managed caching 

A single switch 
chooses the 

STELLA backend 

Horizontal IJ-plane 

Block0 Block1 

Block2 Block3 

Coarse-grained parallelism"

Fine-grained 
parallelism 
(vectorization)"
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COSMO: old and new (refactored) code

24

main (current / Fortran)

physics 
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics 
(Fortran) 

with OpenMP / 
OpenACC

dynamics (C++)

MPI or whatever

system

Generic 
Comm. 
Library

boundary 
conditions & 
halo exchg.

stencil library

X86 GPU

Shared 
Infrastructure
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Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering 

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Imperative code
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Computer

Domain science & applied mathematics

Computer engineering 

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Physical model

Mathematical description

Algorithmic description

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 
Schulthess, Nature Physics, vol 11, 369-373 (2015)



T. SchulthessGTC Europe, Amsterdam, Thursday September 29, 2016 28

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 

Physical model

Mathematical description

H = −t
∑

⟨ij⟩,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Algorithmic description
Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k

28

Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Physical model

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering 
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 

© 2015 Macmillan Publishers Limited. All rights reserved
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Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Algorithmic description
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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= − ∇p + ρg − 2Ω×(ρv) + F
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
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Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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The good news

33

C++ 11, 14, HPX-3, … 17, 20, …

C++ standard is evolving quickly and implementations follow!
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Who will pay for the implementation of 
Fortran, OpenACC, OpenMP, …?
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Source: Andy Keane @ ISC’10

for 8 GPUs, or $16k a piece

$500,000,000 
$2,000,000,000 

$13,000
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