
10/26/2016 1

An Overview of HPC and the Changing

Rules at Exascale

Jack Dongarra

University of Tennessee

Oak Ridge National Laboratory

University of Manchester

http://www.research.ibm.com/
http://www.research.ibm.com/
http://www.research.ibm.com/
http://www.research.ibm.com/

Outline

• Overview of High Performance

Computing

• Look at some of the adjustments that

are needed with Extreme Computing

 Using linear algebra algorithms and

software as the example

2

State of Supercomputing Today

• Pflops (> 1015 Flop/s) computing fully established

with 95 systems.

• Three technology architecture possibilities or

“swim lanes” are thriving.

• Commodity (e.g. Intel)

• Commodity + accelerator (e.g. GPUs, KNC) (93 systems)

• Lightweight cores (e.g. ShenWei, ARM, Intel’s Knights

Landing)

• Interest in supercomputing is now worldwide, and

growing in many new markets (around 50% of Top500

computers are used in industry).

• Exascale (1018 Flop/s) projects exist in many

countries and regions.

• Intel processors have largest share, 91% followed

by AMD, 3%. 3

4

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful

Computers in the World

- Yardstick: Rmax from LINPACK MPP

Ax=b, dense problem

- Updated twice a year

SC‘xy in the States in November

Meeting in Germany in June

- All data available from www.top500.org

Size

R
a
te

TPP performance

Performance Development of HPC over

the Last 24 Years from the Top500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 201420152016

59.7 GFlop/s

400 MFlop/s

1.17 TFlop/s

93 PFlop/s

286 TFlop/s

567 PFlop/s

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

My Laptop 70 Gflop/s

PERFORMANCE DEVELOPMENT

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

SUM

N=1

N=100

1 Gflop/s

1 Tflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

N=10

Tflops

Achieved

Pflops

Achieved

Eflops

Achieved?

June 2016: The TOP 10 Systems

Rank Site Computer Country Cores
Rmax

[Pflops]
% of
Peak

Power
[MW]

GFlops/
Watt

1
National Super

Computer Center in
Wuxi

Sunway TaihuLight, SW26010
(260C) + Custom

China 10,649,000 93.0 74 15.4 6.04

2
National Super

Computer Center in
Guangzhou

Tianhe-2 NUDT,
Xeon (12C) + IntelXeon Phi (57c)

+ Custom
China 3,120,000 33.9 62 17.8 1.91

3
DOE / OS

Oak Ridge Nat Lab

Titan, Cray XK7, AMD (16C) +
Nvidia Kepler GPU (14c) +

Custom
USA 560,640 17.6 65 8.21 2.14

4
DOE / NNSA

L Livermore Nat Lab
Sequoia, BlueGene/Q (16C)

+ custom
USA 1,572,864 17.2 85 7.89 2.18

5
RIKEN Advanced
Inst for Comp Sci

K computer Fujitsu SPARC64
VIIIfx (8C) + Custom

Japan 705,024 10.5 93 12.7 .827

6
DOE / OS

Argonne Nat Lab
Mira, BlueGene/Q (16C)

+ Custom
USA 786,432 8.16 85 3.95 2.07

7
DOE / NNSA /

Los Alamos & Sandia
Trinity, Cray XC40,Xeon (16C) +

Custom
USA 301,056 8.10 80 4.23 1.92

8 Swiss CSCS
Piz Daint, Cray XC30, Xeon (8C)
+ Nvidia Kepler (14c) + Custom

Swiss 115,984 6.27 81 2.33 2.69

9 HLRS Stuttgart
Hazel Hen, Cray XC40, Xeon

(12C) + Custom
Germany 185,088 5.64 76 3.62 1.56

10 KAUST
Shaheen II, Cray XC40, Xeon

(16C) + Custom
Saudi
Arabia

196,608 5.54 77 2.83 1.96

500 Internet company Inspur Intel (8C) + Nnvidia China 5440 .286 71

TaihuLight ~ 5 X Performance of Titan

TaihuLight ~ .9 X Sum of all EU Systems

TaihuLight ~ 1.4 X Sum of all DOE Systems

Countries Share

China has 1/3 of the systems,

while the number of systems in the

US has fallen to the lowest point

since the TOP500 list was created.

UK

Performance of Countries

0

1

10

100

1,000

10,000

100,000

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

To
ta

l P
e

rf
o

rm
an

ce
 [

Tf
lo

p
/s

]

US

Performance of Countries

0

1

10

100

1,000

10,000

100,000

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

To
ta

l P
e

rf
o

rm
an

ce
 [

Tf
lo

p
/s

]

US

EU

Performance of Countries

0

1

10

100

1,000

10,000

100,000

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

To
ta

l P
e

rf
o

rm
an

ce
 [

Tf
lo

p
/s

]

US

EU

Japan

Performance of Countries

0

1

10

100

1,000

10,000

100,000

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

To
ta

l P
e

rf
o

rm
an

ce
 [

Tf
lo

p
/s

] US

EU

Japan

China

Recent Developments
• US DOE planning to deploy O(100) Pflop/s systems for 2017-

2018 - $525M hardware

• Oak Ridge Lab and Lawrence Livermore Lab to receive IBM,
Nvidia, Mellanox based systems

• Argonne Lab to receive Intel and Cray based system
• After this the next round of systems are an Exaflop

• US Dept of Commerce is preventing some China
groups from receiving Intel technology
• Citing concerns about nuclear research being done with the

systems; February 2015.

• On the blockade list:
• National SC Center Guangzhou, site of Tianhe-2

• National SC Center Tianjin, site of Tianhe-1A

• National University for Defense Technology, developer

• National SC Center Changsha, location of NUDT

13

Since the Dept of Commerce Action …
• Expanded focus on Chinese made HW and SW

• “Anything but from the US”

• Three separate developments in HPC
• Wuxi

• ShenWei O(100) Pflops all Chinese, June 2016

• NUDT
• Tianhe-2A O(100) Pflops will be Chinese ARM + accelerator,

2017

• Sugon - CAS ICT
• AMD? new processors

• In the latest “5 Year Plan”
• Govt push to build out a domestic HPC ecosystem.

• Exascale system, will not use any US chips

10/26/2016

14

• China’s first homegrown many-core processor

• Vendor: Shanghai High Performance IC Design Center

• Supported by National Science and Technology Major

Project (NMP): Core Electronic Devices, High-end Generic

Chips, and Basic Software

• 28 nm technology

• 260 Cores

• 3 Tflop/s peak

SW26010 Processor

• 1 node

• 260 cores per processor

• 4 Core Groups (CGs), each of which has:

• 1 Management Processing Element (MPE)

• 64 (8x8) Computing Processing Elements (CPEs)

SW26010: General Architecture
RoadRunner Node

Sunway TaihuLight http://bit.ly/sunway-2016

• SW26010 processor

• Chinese design, fab, and ISA

• 1.45 GHz

• Node = 260 Cores (1 socket)
• 4 – core groups

• 64 CPE, No cache, 64 KB scratchpad/CPE

• 1 MPE w/32 KB L1 dcache & 256KB L2 cache

• 32 GB memory total, 136.5 GB/s

• ~3 Tflop/s, (22 flops/byte)

• Cabinet = 1024 nodes
• 4 supernodes=32 boards(4 cards/b(2 node/c))

• ~3.14 Pflop/s

• 40 Cabinets in system
• 40,960 nodes total

• 125 Pflop/s total peak

• 10,649,600 cores total

• 1.31 PB of primary memory (DDR3)

• 93 Pflop/s for HPL, 74% peak

• 15.3 MW, water cooled

• 6.07 Gflop/s per Watt

• 1.8B RMBs ~ $280M, (building, hw, apps, sw, …)

• Planning an air-cooled version, single cabinet for
their weather community

18Confessions of an

Accidental Benchmarker
• Appendix B of the Linpack Users’ Guide

• Designed to help users extrapolate execution time for

Linpack software package

• First benchmark report from 1977;

• Cray 1 to DEC PDP-10

Began in late 70’s

Time when floating point

operations were expensive

compared to other

operations and data

movement

http://tiny.cc/hpcg

Many Other Benchmarks

• TOP500

• Green 500

• Graph 500

• Sustained Petascale
Performance

• HPC Challenge

• Perfect

• ParkBench

• SPEC-hpc

• Big Data Top100

• Livermore Loops

• EuroBen

• NAS Parallel Benchmarks

• Genesis

• RAPS

• SHOC

• LAMMPS

• Dhrystone

• Whetstone

• I/O Benchmarks

• WRF

• Yellowstone

• Roofline

• Neptune

19

HPCG
• High Performance Conjugate Gradients (HPCG).

• Solves Ax=b, A large, sparse, b known, x computed.

• An optimized implementation of PCG contains essential computational
and communication patterns that are prevalent in a variety of methods
for discretization and numerical solution of PDEs

• Synthetic discretized 3D PDE (FEM, FVM, FDM).

• Sparse matrix:
• 27 nonzeros/row interior.

• 8 – 18 on boundary.

• Symmetric positive definite.

• Patterns:
• Dense and sparse computations.

• Dense and sparse collectives.

• Multi-scale execution of kernels via MG (truncated) V cycle.

• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification (via spectral properties of PCG).

20

hpcg-benchmark.org

Rank

(HPL) Site Computer Cores

HPL
Pflop/s

HPCG
Pflop/s

% of

Peak for

HPCG

1 (2) NSCC / Guangzhou Tianhe-2 NUDT, Xeon 12C

2.2GHz + Intel Xeon Phi 57C +

Custom

3,120,000 33.86 0.580 1.1%

2 (5) RIKEN AICS K computer, SPARC64 VIIIfx

2.0GHz, custom

705,024 10.51 0.554 4.9%

3 (1) NCSS / Wuxi Sunway TaihuLight -- SW26010,

Sunway

10,649,600 93.01 0.371 0.3%

4 (4) DOE NNSA / LLNL Sequoia - IBM BlueGene/Q +

custom

1,572,864 17.17 0.330 1.6%

5 (3) DOE SC / ORNL Titan - Cray XK7 , Opteron

6274 16C 2.200GHz, custom,

NVIDIA K20x

560,640 17.59 0.322 1.2%

6 (7) DOE NNSA /

LANL& SNL

Trinity - Cray XC40, Intel E5-

2698v3, + custom

301,056 8.10 0.182 1.6%

7 (6) DOE SC / ANL Mira - BlueGene/Q, Power BQC

16C 1.60GHz, + Custom

786,432 8.58 0.167 1.7%

8 (11) TOTAL Pangea -- Intel Xeon E5-2670,

Ifb FDR

218592 5.28 0.162 2.4%

9 (15) NASA / Mountain

View

Pleiades - SGI ICE X, Intel E5-

2680, E5-2680V2, E5-2680V3 +

Ifb

185,344 4.08 0.155 3.1%

10 (9) HLRS / U of Stuttgart Hazel Hen - Cray XC40, Intel

E5-2680v3, + custom

185,088 5.64 0.138 1.9%

HPCG with 80 Entries

Key application domains:

Earth system modeling / weather forecasting

Advanced manufacturing (CFD/CAE)

Life science

Big data analytics

Sunway TaihuLight: Applications

• 35 apps running on the system

• 6 of them are running at full scale

• 18 of them are running on half the machine

• 20 applications on million cores

• Apps will typically run "out of the box”

• No use of CPEs, just on MPE, with poor performance

• Codes needs to be refactored to use CPE

• The Center has 20 people to help with

optimizing apps to run on the system.

• CAM code 20K lines of code to start,

ended with 100K lines, 10 people.

• Phase field 12K lines of code to start,

ended with 20K, 3 people + help

Applications on the TaihuLight

Gordon Bell Award

24

• Since 1987 the Gordon Bell Prize is awarded at the SC
conference to recognize outstanding achievement in high-
performance computing.

• The purpose of the award is to track the progress of parallel
computing, with emphasis on rewarding innovation in
applying HPC to applications.

• Financial support of the $10,000 award is provided by
Gordon Bell, a pioneer in high-performance and parallel
computing.

• Authors‘ mark their SC paper as a possible Gordon Bell Prize
competitor.

• Gordon Bell committee reviews the papers and selects 6
papers for the competition.

• Presentations are made at SC and a winner is chosen.

Gordon Bell Award Finalists at SC16
• “Modeling Dilute Solutions Using First-Principles Molecular Dynamics: Computing

More than a Million Atoms with Over a Million Cores,”
• Lawrence-Livermore National Laboratory (Calif.)

• “Towards Green Aviation with Python at Petascale,”
• Imperial College London (England)

• “Simulations of Below-Ground Dynamics of Fungi: 1.184 Pflops Attained by
Automated Generation and Autotuning of Temporal Blocking Codes,”

• RIKEN (Japan), Chiba University (Japan), Kobe University (Japan) and Fujitsu Ltd. (Japan)

• “Extreme-Scale Phase Field Simulations of Coarsening Dynamics on the Sunway
Taihulight Supercomputer,”

• Chinese Academy of Sciences, the University of South Carolina, Columbia University (New York), the
National Research Center of Parallel Computer Engineering and Technology (China) and the National
Supercomputing Center in Wuxi (China)

• “A Highly Effective Global Surface Wave Numerical Simulation with Ultra-High
Resolution,”

• First Institute of Oceanography (China), National Research Center of Parallel Computer Engineering and
Technology (China) and Tsinghua University (China)

• “10M-Core Scalable Fully-Implicit Solver for Nonhydrostatic Atmospheric
Dynamics,”

• Chinese Academy of Sciences, Tsinghua University (China), the National Research Center of Parallel
Computer Engineering and Technology (China) and Beijing Normal University (China)

25

Sunway TaihuLight is Available …

• The TaihuLight was put on the internet last month.

• If you would like to use the TaihuLight, go to…

• http://www.nsccwx.cn/wxcyw/process.php?word=process&i=54

28

http://www.nsccwx.cn/wxcyw/process.php?word=process&i=54

Peak Performance - Per Core

Floating point operations per cycle per core

 Most of the recent computers have FMA (Fused multiple add): (i.e.
x ←x + y*z in one cycle)

 Intel Xeon earlier models and AMD Opteron have SSE2

 2 flops/cycle DP & 4 flops/cycle SP

 Intel Xeon Nehalem (’09) & Westmere (’10) have SSE4

 4 flops/cycle DP & 8 flops/cycle SP

 Intel Xeon Sandy Bridge(’11) & Ivy Bridge (’12) have AVX

 8 flops/cycle DP & 16 flops/cycle SP

 Intel Xeon Haswell (’13) & (Broadwell (’14)) AVX2

 16 flops/cycle DP & 32 flops/cycle SP

 Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

 Intel Xeon Skylake (server) AVX 512

 32 flops/cycle DP & 64 flops/cycle SP

 Knight’s Landing

We

are

here
(almost)

CPU Access Latencies in Clock Cycles

In 167 cycles can do 2672 DP Flops

Cycles

Cycles

Classical Analysis of Algorithms

May Not be Valid

• Processors over provisioned for
floating point arithmetic

• Data movement extremely expensive

• Operation count is not a good
indicator of the time to solve a
problem.

• Algorithms that do more ops may
actually take less time.

10/26/2016

31

68 cores Intel Xeon Phi KNL, 1.3 GHz

The theoretical peak double precision is 2662 Gflop/s

Compiled with icc and using Intel MKL 2017b1 20160506

Level 1, 2 and 3 BLAS
68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

80.3 Gflop/s

35.1 Gflop/s

2100 Gflop/s

35x

Singular Value Decomposition
LAPACK Version 1991

Level 1, 2, & 3 BLAS

First Stage 8/3 n3 Ops

Dual socket – 8 core

Intel Sandy Bridge 2.6 GHz

(8 Flops per core per cycle)

QR refers to the QR algorithm

for computing the eigenvalues

LAPACK QR (BLAS in ||, 16 cores)

LAPACK QR (using1 core)(1991)

LINPACK QR (1979)

EISPACK QR (1975)

3 Generations of software compared

Bottleneck in the Bidiagonalization
The Standard Bidiagonal Reduction: xGEBRD

Two Steps: Factor Panel & Update Tailing Matrix

Characteristics
• Total cost 8n3/3, (reduction to bi-diagonal)

• Too many Level 2 BLAS operations

• 4/3 n3 from GEMV and 4/3 n3 from GEMM

• Performance limited to 2* performance of GEMV
• Memory bound algorithm.

factor panel k then update  factor panel k+1

Q*A*PH

Requires 2 GEMVs

Recent Work on 2-Stage Algorithm

Characteristics
• Stage 1:

• Fully Level 3 BLAS

• Dataflow Asynchronous execution

• Stage 2:

• Level “BLAS-1.5”

• Asynchronous execution

• Cache friendly kernel (reduced communication)

First stage
To band

Second stage
Bulge chasing
To bi-diagonal

First stage
To band

Second stage
Bulge chasing
To bi-diagonal

More Flops, original did 8/3 n3

25% More flops

Recent work on developing new 2-stage algorithm

Recent work on developing new 2-stage algorithm

First stage
To band

Second stage
Bulge chasing
To bi-diagonal

25% More flops and 1.8 – 6 times faster

16 Sandy Bridge cores 2.6 GHz

Parallelization of LU and QR.

Parallelize the update:
• Easy and done in any reasonable software.
• This is the 2/3n3 term in the FLOPs count.
• Can be done efficiently with LAPACK+multithreaded BLAS

-

dgemm

-

lu()

dgetf2

dtrsm (+ dswp)

dgemm

\

L

U

A(1)

A(2)
L

U

Fork - Join parallelism

Bulk Sync Processing

C
o

re
s

Time

Synchronization (in LAPACK LU)

• Fork-join, bulk synchronous processing 27

Step 1 Step 2 Step 3 Step 4 . . .

 fork join

 bulk synchronous processing

39

PLASMA LU Factorization
Dataflow Driven

xTRSM

xGEMM

xGEMM

xGETF2

xTRSM

xTRSM

xTRSM

xGEMM
xGEMM

xGEMM

xGEMM
xGEMM

xGEMM
xGEMM

xGEMM xGEMM

Numerical program generates tasks and

run time system executes tasks respecting

data dependences.

� LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

� TRSMs, QRs, or LUs

� TRSMs, TRMMs

� Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization Batched LA

And many other BLAS/LAPACK, e.g., for application
specific solvers, preconditioners, and matrices

OpenMP tasking

• Added with OpenMP 3.0 (2009)

• Allows parallelization of irregular problems

• OpenMP 4.0 (2013) - Tasks can have

dependencies

• DAGs

41

Tiled Cholesky Decomposition

42

Objectives
 High utilization of each core

 Scaling to large number of cores

 Synchronization reducing algorithms

Methodology
 Dynamic DAG scheduling

 Explicit parallelism

 Implicit communication

 Fine granularity / block data layout

Arbitrary DAG with dynamic scheduling

43

Fork-join parallelism

Notice the synchronization

penalty in the presence of

heterogeneity.

Dataflow Based Design

DAG scheduled

parallelismC
o

re
s

Time

API for Batching BLAS Operations

• We are proposing, as a community
standard, an API for Batched Basic
Linear Algebra Operations

• The focus is on multiple independent
BLAS operations
• Think “small” matrices (n<500) that are

operated on in a single routine.

• Goal to be more efficient and portable
for multi/manycore & accelerator
systems.

• We can show 2x speedup and 3x better
energy efficiency.

44 / 57

Level 1, 2 and 3 BLAS
68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

68 cores Intel Xeon Phi KNL, 1.3 GHz

The theoretical peak double precision is 2662 Gflop/s

Compiled with icc and using Intel MKL 2017b1 20160506

60.3 Gflop/s

35.1 Gflop/s

2100 Gflop/s

35x

Convolution operation:

• For every filter Fn and every channel, the computation for every

pixel value On,k is a tensor contraction:

• Plenty of parallelism; small operations that must be batched

• With data “reshape” the computation can be transformed

into a batched GEMM (and hence, efficiently implemented;

among other approaches)

Machine Learning
Need of Batched and/or Tensor contraction routines in machine learning

Dk

e.g., Convolutional Neural Networks (CNNs) used in computer vision

Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F

Data D

Fn

On

n,kO

n,kO =
k,iD

i

å n,iF

Output O

This problem can get away

with 16 bit floating point

=> Some architectures are now

implementing this

Examples
Need of Batched routines for Numerical LA

[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;]

[collaboration with Tim Davis at al., Texas A&M University]

 LU, QR, or Cholesky

on small diagonal matrices

Sparse / Dense Matrix

System

 TRSMs, QRs, or LUs

 TRSMs, TRMMs

 Updates (Schur complement)

GEMMs, SYRKs, TRMMs

DAG-based factorization
To capture main LA patterns needed in a

numerical library for Batched LA

• Example matrix from Quantum chromodynamics

• Reordered and ready for sparse direct multifrontal solver

• Diagonal blocks can be handled in parallel through batched

LU, QR, or Cholesky factorizations

MAGMA Batched Computations CPU

1. Non-batched computation
loop over the matrices one by one and compute either:

• One call for each matrix.

• Sequentially wasting all the other cores, and attaining very poor

performance

• Or using multithread (note that for small matrices there is not

enough work for all cores so expect low efficiency as well as

threads contention can affect the performance)

for (i=0; i<batchount; i++)

dgemm(…)

MAGMA Batched Computations CPU

2. Batched computation
loop over the matrices and assign a matrix to each core working on it

sequentially and independently

• Since matrices are very small, all the n_cores matrices will fit into L2

cache thus we do not increase L2 cache misses while performing in

parallel n_cores computations reaching the best of each core

for (i=cpu_id; i<batchcount; i+=n_cpu)

batched_dgemm(…)

68 cores Intel Xeon Phi KNL, 1.3 GHz

The theoretical peak double precision is 2662 Gflop/s

Compiled with icc and using Intel MKL 2017b1 20160506

Level 1, 2 and 3 BLAS
68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

3x

51 / 57

Mixed Precision Methods

Mixed precision, use the lowest
precision required to achieve a
given accuracy outcome
Improves runtime, reduce power
consumption, lower data movement

Reformulate to find correction to
solution, rather than solution; Δx
rather than x.

52
52

53

Idea Goes Something Like This…

• Exploit 32 bit floating point as much as
possible.
Especially for the bulk of the computation

• Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results

• Intuitively:
Compute a 32 bit result,

Calculate a correction to 32 bit result using
selected higher precision and,

Perform the update of the 32 bit results with
the correction using high precision.

L U = lu(A) SINGLE O(n
3
)

x = L\(U\b) SINGLE O(n
2
)

r = b – Ax DOUBLE O(n
2
)

WHILE || r || not small enough

z = L\(U\r) SINGLE O(n
2
)

x = x + z DOUBLE O(n
1
)

r = b – Ax DOUBLE O(n
2
)

END

Mixed-Precision Iterative Refinement

 Iterative refinement for dense systems, Ax = b, can work
this way.

 Wilkinson, Moler, Stewart, & Higham provide error bound for SP
fl pt results when using DP fl pt.

54

L U = lu(A) SINGLE O(n
3
)

x = L\(U\b) SINGLE O(n
2
)

r = b – Ax DOUBLE O(n
2
)

WHILE || r || not small enough

z = L\(U\r) SINGLE O(n
2
)

x = x + z DOUBLE O(n
1
)

r = b – Ax DOUBLE O(n
2
)

END

Mixed-Precision Iterative Refinement

 Iterative refinement for dense systems, Ax = b, can work
this way.

 Wilkinson, Moler, Stewart, & Higham provide error bound for SP
fl pt results when using DP fl pt.

 It can be shown that using this approach we can compute the
solution to 64-bit floating point precision.

 Requires extra storage, total is 1.5 times normal;
 O(n3) work is done in lower precision
 O(n2) work is done in high precision
 Problems if the matrix is ill-conditioned in sp; O(108)55

0

200

400

600

800

1000

1200

1400

1600

SP Solve

DP Solve

Matrix size

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)

CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

Solving general dense linear systems using mixed precision iterative refinement

Mixed precision iterative refinement

56

0

200

400

600

800

1000

1200

1400

1600
SP Solve

DP Solve (MP
Iter.Ref.)

DP Solve

Matrix size

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)

CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

Solving general dense linear systems using mixed precision iterative refinement

Mixed precision iterative refinement

57

Execution rates based on same op count

Software and Algorithm Must Keep Pace with

the Changes in Hardware

10/26/2016

60

• Classical analysis of algorithms may not be

valid,

• # of floating point ops ≠ computation time.

• Algorithms and software must take

advantage by reducing data movement.

• Need latency tolerance in our algorithms

• Communication and synchronization

reducing algorithms and software are critical.

• As parallelism grows

• Many existing algorithms can’t fully exploit

the features of modern architecture

• Time to rethink

Critical Issues at Peta & Exascale for

Algorithm and Software Design
• Synchronization-reducing algorithms

 Break Fork-Join model

• Communication-reducing algorithms

 Use methods which have lower bound on communication

• Mixed precision methods

 2x speed of ops and 2x speed for data movement

• Autotuning

 Today’s machines are too complicated, build “smarts” into

software to adapt to the hardware

• Fault resilient algorithms

 Implement algorithms that can recover from failures/bit flips

• Reproducibility of results

 Today we can’t guarantee this. We understand the issues,

but some of our “colleagues” have a hard time with this.

Collaborators and Support
MAGMA team

http://icl.cs.utk.edu/magma

PLASMA team

http://icl.cs.utk.edu/plasma

Collaborating partners

University of Tennessee, Knoxville
Lawrence Livermore National Laboratory, Livermore, CA
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

