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Seasonal forecast experiments:

» Stochphys ON = System 4 CY36R4 T255L.91 NEMO1° 7-month hindcasts from 1981-2010 51 ensemble
members (Nov, May, Aug), SPPT and SPBS in atmosphere
= Stochphys OFF: as above but without SPPT and SPBS

Monthly forecast experiments:

= CY40R1 T399/T255L.91 NEMO1° 32-day hindcasts from 1989-2008 11 ensemble members 4 start dates
per year (Nov, Feb, May, Aug), SPPT and SPBS ON/OFF in atmosphere



Systematic errors: SST during the first forecast month
(initialised 18t August 1989-2008)




Systematic biases in seasonal forecasts

OLR total cloud cover precipitation (vs GPCP) zonal wind 850hPa
bias Stochphys OFF

= Reduction of overly active tropical convection
» Reduced precipitation and easterly wind biases over the tropical West Pacific



rel. frequency

Cliimatology of the Madden Julian Oscillation (seasonal forecasts)

System 4 (Stochphys ON) shows increased frequencies of MJO events

= in all phases of the MJO

Stochphys_OFF Stochphys_ON ERA-I

MJO phase

# of days

» for strong MJO events

Stochphys_OFF — stochphys_ON

amplitude



Daily precipitation grid point: lat=0N/lon=105E

— System 4
stochphysOFF

Example: grid point near Singapore
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System 4 has

» reduced mean of daily precip

* increased variance of daily precip

* increase in number of nearly dry days
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See also Peter Watson'’s poster:

Does stochastic physics improve tropical
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1. Introduction

Low resolution atmospheric models generally have
less tropical variability on time scales of several
days than is observed (e.g. [1]). Stochastic physics
(SP) may reduce this bias by increasing the
variability in the simulated tropical convection. SP
has already been shown to improve NWP skill and
reduce some biases in the mean state [2,3]. Here
we quantify the impact of SP on tropical variability
in the ECMWF seasonal forecasting system
(System 4). We also quantify the impact on
simulating tropical precipitation extremes, which
have large societal impacts [2].

2. Data

* We use seasonal hindcasts of daily-mean precipitation from System 4 and compare these with
equivalent hindcasts with the SP schemes deactivated (DET).

* These begin on May 1 and Nov 1 of each year between 1998—-2010 and we use hindcast months 2-
7.

« 10 ensemble members are used so that sampling variability is small.

« System 4 uses two SP schemes: the Stochastically Perturbed Parametrization Tendencies Scheme
(SPPT) and the Spectral Stochastic Backscatter Scheme (SPBS) [2]. Comparing with hindcasts with
just one of SPPT or SPBS activated indicates that most of the effects of SP are due to SPPT (not
shown).

We also compare the model output with the observational GPCP 1DD and TRMM 3B42 V7 datasets.
Note that these show considerable differences in the estimated precipitation amounts in individual
heavy rainfall events, suggesting there is considerable uncertainty in the true variability, so
comparisons with the model data should be made cautiously.

3. Impact on the standard deviation of precipitation



Why do we see a systematic impact on the model climate with SPPT?

Product of two random variables?

= Product distribution depends crucially on input distributions (tendencies)
» Product of two normally distributed variables with u=0 is “well behaved” distributed (e.g. symmetric)
= This is not generally the case, especially not for u # 0

Nonlinear thresholds (e.g. trigger for convection)?
Asymmetric nature of g and precipitation?
Tuning of the model for deterministic formulation versus stochastic model?

Tapering of the boundary layer and related inconsistencies?



Multiplicative noise
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Distribution of humidity and temperature tendencies
in free troposphere over the tropical West Pacific
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Why do we see a systematic impact on the model climate with SPPT?

Product of two random variables?

= Product distribution depends crucially on input distributions (tendencies)
» Product of two normally distributed variables with u=0 is “well behaved” distributed (e.g. symmetric)
= This is not generally the case, especially not for u # 0

Nonlinear thresholds (e.g. trigger for convection)?
Asymmetric nature of g and precipitation?
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Tapering of the boundary layer and related inconsistencies?



Global mean humidity tendencies without BL tapering

Moisture tendencies (kg/kg/s) at T = 2

SPPT perturbation dynamics + physics
| tendencies
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CRPSS in the Tropics
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Impact on forecast skill

bivariate MJO index
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Climate SPHINX — Stochastic Physics High Resolution Experiments

Climate simulations of the EC-Earth v3.1 climate model (atmosphere: IFS ~CY36R4
ocean: NEMO 3.3.1) with and without stochastic physics in the atmosphere for a range of
horizontal resolutions from T159 to T1279 with 91 levels

Rather large radiative imbalances for TOA and surface fluxes with SPPT:
10 times larger P — E imbalance: -0.160 mm/day versus -0.015 mm/day



Non-conservation of humidity in SPPT

. .. (P-E)CONTROL = (P-E) PERT
example 32-day forecast statistics of 32-day forecasts @day 32

global mean evaporation (E) precipition (P) monthly fc initialised on 01/02/1989 exp=gddk mean global mean P-Emonthy fc initialised on 01/02 1989 10 2008 exp=gddk
32 T T ™ T T T v T T T T T

PminusE cf-pf step=768 gddk 02 1989-2008

Evaporation ] ‘, I, P-E
.| Precipitation

unperturbed

operational
SPPT

15 20
fe day fe day fe day

global mean evaporation (E) precipition (P) monthly fc initialised on 01/02/1988 exp=gdus global mean P-E  monthly fc initialised on 01/02/1988  exp=gdus mean global mean P-E  monthly fc initialised on 01/02 1989 to 2008 exp=gdus
32 T - - ~ - T - T T T T T - e — . ~

SPPT = off




Global average change in humidity/ tendency before and after call of SPPT

Modified version of SPPT

» Ensures that the average change in humidity and temperature
tendencies due to SPPTis 0

= Computes global average of tendency change introduced by SPPT
(p, before SPPT, p, after SPPT)

Po v A W 1,

= Redistributes the bias p, — p, so that net change is zero using as
weights the normalized absolute value of the change

P (x,2) +w(x,2) (po - pl) P, ... global average

w ... local weights
P~ po‘

w(x,z) =

Global constraint for the (instantaneous) spatial averages
of p, and p, to be the same



Conservation of humidity in new SPPT

(P-E)CONTROL = (P-E) PERT
example 32-day forecast statistics of 32-day forecasts

global mean evaporation (E) precipition (P) monthly fc initialised on 01/02/1989  exp=gddk global mean P-E  monthly fc initialised on 01/02/1989  exp=gddk mean global mean P-E monthly fc initialised on 01/02 1989 o 2008 exp=gddk
T T - - T T T T T T T - ) T T T T v

PminusE cf-pf step=768 gddk 02 1989-2008

Evaporation ¥ I P-E
. Precipitation unperturbed unperturbed

operational
SPPT
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global mean evaporation (E) precipition (P) monthly fc iitialised on 01/02/1989 exp=ge0x global mean P-E monthy fc nitialised on 01/02/1989 exp=ge0x mean global mean P-E  monthly fc initialised on 01/02 1989102008  exp=ge0x
3 T T * T T T T




Conservation of humidity in new SPPT

Z500 NH extratropics u850 tropics

9
fc-step (d)
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Mean and standard deviation
of saturated hydraulic conductivity

» |and surface is key component in from observations
seasonal prediction

Soil type v

= Implicated in development of heat waves Clay 0.56
= Unquantified uncertainties exist: Clay loam  0.72
. - Loam 2.89

o what is their impact? Silt 0.69

o by explicitly representing these, can we Siltloam  1.25
improve forecasts? Siltclay  0.06




Example: seasonal hindcasts of the hot European summer 2003

Control: IFS CY36R4 T255, 4 month forecast initialised on 1st May Forecasts OIJfTJp:rzan;e il

1981-2012, 25 members (perturbed IC plus atm. stochastic physics)

PP: static parameter perturbations {0,+/-40,+/-80}% of two key Control
hydrological parameters: Van-Genuchten a (water retention curve) climatology
and saturated hydraulic conductivity

ST: stochastic tendency perturbations for soil moisture and soill
temperature using SPPT-like spectral pattern generator (SPG)

ST-1: default SPG
ST-2: equal scales of the SPG
ST-3: mirrored scales of the default SPG

small/short medium | Large/slow
scale scale scale

default

equal

mirror




Static versus stochastic parameter perturbations

Control: IFS CY41R1 T255, 4 month forecast initialised on 15t May
1981-2013, 25 members (perturbed IC plus atm. stochastic physics)

PP: static parameter perturbations {0,+/-40,+/-80}% of two key
hydrological parameters: Van-Genuchten a (water retention curve)

and saturated hydraulic conductivity static perturbed parameters (PP)

SP: stochastic parameter perturbations using
SPPT-like SPG

SP-default: default SPG
SP-equal: equal scales of the SPG
mirrored scales of the default SPG

| | | | | | | | | |
80 120 160 200
Lead time (hours)
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Forecast quality of perturbed land surface schemes

Soil moisture @level 1 over Southern Europe/Mediterranean Basin
reference: ERA Land

Anomaly correlation 5. Ratio spread/RMSE
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Reliability of Soil moisture @level 1 over global land areas reference: ERA Land
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See also David MacLeod’s poster:

Perturbation of HTESSEL hydrology parameters
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INTRODUCTION

Methods to explicitly represent uncertainties in weather and climate models have
reduced model biases and improved forecast skill when implemented for the
atmosphere. However, these methods have not yet been applied to the land surface.

At certain times and in certain places the land surface is strongly coupled to the
atmosphere, such as during the 2003 heatwave over Europe when dry soil led to
extreme summertime temperatures. Improvements in the representation of uncertainty
in the land surface may then lead to improvements in forecast for the atmosphere in
cases like this.

We analyze seasonal experiments performed with the ECMWF weather and seasonal
climate forecasting model, the Integrated Forecasting System (IFS), with different
kinds of perturbation made to the land surface, in order to investigate the effect of
explicitly incorporating uncertainty in this domain.

EXPERIMENTS

The control experiment setup is as follows:

Four month forecast initialised at the start of every May for 1981-2013

25 member ensemble, with initial condition perturbations.

Atmosphere: IFS Cycle 41R1, T255 resolution, 91 vertical levels. Atmospheric
stochastic schemes SPPT & SKEB switched on.

Ocean: NEMO 1 degree, 42 vertical levels

CONCLUSIONS

Previous work with CY36R4 showed that by perturbing land surface parameters with a constant
perturbation, forecasts of the hot 2003 European summer are improved (MacLeod et al 2015). Building
on this work, we show here that perturbing parameters in CY41R1 gives large improvements in terms
of soil moisture reliability, particularly for less frequent events (quintiles).

Experiments with stochastic parameters and tendencies have also been carried out, but these do not
show the improvement in reliability seen for the static perturbed parameter experiment. Of these, the
experiment which uses the “slowest” scale most closely replicates the PP result, however the
improvement is not as great.

The model spread/error ratio is increased with perturbation. For soil moisture the SP experiments give
the largest improvement, however the PP experiment gives an unusually large increase in spread of soil
temperature despite only perturbing soil hydrology parameters.

Future work at ECMWEF is now looking at perturbations to the land-atmosphere coupling parameter.

RESULTS

Impact on spread

Ratio spread(sd)/RMSE Ratio spread(sd)/RMSE

Soil temperature Ivl 1 over Tropical Land (TROL) Soil moisture Ivl 1 over Tropical Land (TROL)

Reference is ERA Land Reference is ERA Land

Bars are 95 confidence intervals computed with 1000 samples Bars are 95 confidence intervals computed with 1000 samples




Summary

1. Atmospheric stochastic physics and model bias in the coupled ECMWF model

= Reduction of tropical biases in convective areas

2. Impact of atmospheric stochastic physics on climate forecast quality

= |mprovements in the tropics

3. Non-conservation of humidity with SPPT

» (Temporary) fix to SPPT to ensure conservation of humidity (and temperature) tendencies

4. Model uncertainty of the land surface

» |mpact varies across regions and perhaps most noticeable for extreme events



Outlook

CLIMATE SPHINX PRACF

Climate SPHINX (Stochastic Physics High Resolution Experiments) is
a PRACE EU project which aims to investigate the sensitivity of
climate simulations to model resolution and stochastic
parameterizations, and to determine if very high resolution is truly
necessary to facilitate the simulation of the main features of
climate variability.

SPHINX is a project by ISAC-CNR, lead by Jost von Hardenberg, in collaboration
vith Oxford University (Tim Palmer and Antje Weisheimer group).
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