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@ Model errors

Development of a combined model error and observation error
covariance matrix for use in 4DVar

@ Estimation of the combined matrix with diagnostics

Results
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Random model error

Models are best representations of true dynamical systems

t
xi = My x4

= My Xt =12 ..

where the model error n; ~ N(0, Q;).
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Four dimensional variational data assimilation (4DVar)

1 1 o o
j(XO) = E(Xo — Xb)TB_l(Xo — Xb) =+ §(y — HXO)TR l(y — HXQ),
Yo Ho
Y1 HiMp_,1 Ro 0 . . 0
. 0 R; 0 . 0
y= A= and R = : 0 0
0
: : 0 0 Ry
YN HyMo_s v

@ €, = xP — x*y with €, ~ N(0,B),

o €op = § — Fxto with €55 ~ (0, R).
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4DVar with erroneous model

1 _ 1., =~ I
J(x) = E(xo —xP)TB Y (xg — x°) + E(y —Hxo)'R 1(y — Hxg),
Yo Ho
y1 HiMg_ 1
§= H=
y;v HN|\~/|.0~>N

€x, = § — Hxto with €%, ~ N(?2,7)
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Combined model error and observation error

€bi = Yi— HiMg_x‘, €obi ~ N(0,R)) (1)
= Yi— HiMOHIXth 6:';b,' ~ N(?7 ?) (2)

%
€obj

Kat Howes (University of Reading) Model error April 2016 6 /27



Combined model error and observation error

€bi = Yi— HiMg_x‘, €obi ~ N(0,R)) (1)
= Yi— HiMOHIXth 6:';b,' ~ N(?7 ?) (2)

%
€obj

Substracting (1) from (2) and rearranging,
€y = €obi + Hi(Mo_yixfg — Mo_ix%o),

1
= b +Hi > M m,
j=1
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Combined model error and observation error

€bi = Yi— HiMg_x‘, €obi ~ N(0,R)) (1)
= Yi— HiMOHIXth 6:';b,' ~ N(?7 ?) (2)

%
€obj

Substracting (1) from (2) and rearranging,

t N t
€sp; = €obj + Hi(Mo_ix"g — Mg_,;x%),
i
= €opi + Hi Z M;_,in;,

Jj=1

<e€yp; > = 0.
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Combined model error and observation error covariance

Let,

.
R* (k) =< €xpi(€0p) " > -
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Combined model error and observation error covariance

Let,
* _ * * T
R (i,k) =< 6obi(eobk) >
Then,
Ry for i=k=0
min(i,k) _ - T
. R; + H; M;iQiM;_ H,™  fori=k
Rk = =1
min(i,k) _ . -
H; Z MJ'A),‘QJ'MJ'H;(T H, otherwise.
=1
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Combined model error and observation error covariance

Let,
* _ * * T
R (i,k) =< 6obi(eobk) >
Then,
Ry for i=k=0
min(i,k) _ T -
N R; + H; Z MJH,QJ ik H, for i=k
Rk = =1
min(i,k) _ -
H | > JH,QJ JHk H, otherwise.
=1
min(i,k) _ -
Let Q*(i’k) Z M‘/‘HQJ J—>k He .
Jj=
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Combined model error and observation error covariance

matrix
Then,
R0 0 0
0 Ri+Qqy Quzy - Q" (1,n)
R* = Q*(2,1) R2 =+ Q*(272) : :
0 Q*(N,l) RN+Q*(N,N)
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Combined model error and observation error covariance

matrix
Then,
Ro 0 . 0
0 Ri+Qqy Quzy - Q" (1,n)
R* = ; Q" 2,1 Ro+ Q%22 ;

0 Q* (w1 - Ry + QW)

@ An increase in block diagonal terms. This is an accumulation of the
model error over the assimilation time window.
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Combined model error and observation error covariance

matrix
Then,
Ro 0 0
0 Ri+Q%y Q' - Q" (1,n)
e | . :

Q" 2,1 Rz + Q%22

0 Q* (w1 - Ry + QW)

@ An increase in block diagonal terms. This is an accumulation of the
model error over the assimilation time window.

@ The formation of off diagonal block model error covariance terms.
This is the presence of time correlations caused by the error in the
model.
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Increase in analysis accuracy

Erroneous model x; = IVI{,-,l}H,-x,-,l used within the strong constraint
4DVar cost function.

Kat Howes (University of Reading) Model error April 2016 9 /27



Increase in analysis accuracy

Erroneous model x; = I\~/I{,-,1}H,-x,-,1 used within the strong constraint

4DVar cost function.

Error in the model
not accounted for
(use of R)

Error in the model
accounted for
(use of R¥)

A ~
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Increase in analysis accuracy

Erroneous model x; = I\~/I{,-,1}H,-x,-,1 used within the strong constraint

4DVar cost function.

Error in the model
not accounted for
(use of R)

Error in the model
accounted for
(use of R¥)

A ~

x% = xP + K(§ — Hx?)

K =BHT(HBHT + R)™!

x%* = xbP + K*(§ — Hx?)

K* = BHT(HBHT + R*)"!
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Increase in analysis accuracy

Erroneous model x; =
4DVar cost function.

I\~/I{,-,1}H,-x,-,1 used within the strong constraint

Error in the model
not accounted for
(use of R)

Error in the model
accounted for
(use of R¥)

A ~

x% = xP + K(§ — Hx?)

K=BHT(HBH7 +R)™! | K*

x%* =xP + R*(y —

= BHT(HBHT + R*)!

Hx?)

A=(1-KH)B

A~

+ KQ*KT

A~

A* = (1 — K*H)B

Table :
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Increase in analysis accuracy

Error in the model Error in the model
not accounted for accounted for
(use of R) (use of R*)
A=(-kiBRQKD A= KA
unbounded bounded by B
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Increase in analysis accuracy

Error in the model Error in the model
not accounted for accounted for
(use of R) (use of R*)
A=(-kiBRQKD A= KA
unbounded bounded by B

@ No model error is present: Best Linear Unbiased Estimate (BLUE) has
A = (1 - KH)B with K =BHT(HBH” + R) ..
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Increase in analysis accuracy

Error in the model Error in the model
not accounted for accounted for
(use of R) (use of R*)
A=(-kiBRQKD A= KA
unbounded bounded by B

@ No model error is present: Best Linear Unbiased Estimate (BLUE) has
A = (1 - KH)B with K =BHT(HBH” + R) ..

@ Model error is present: replacement of R with R* leads to A* having the
same form = analysis x%,* is more statistically accurate than the analysis
Xao.
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Increase in analysis accuracy: Scalar case

@ Erroneous model x; = (x;_1,
@ true model state xt; = x%;_1 = Bxi_1 +n;,

@ direct observations at time t; with operator h; = 1,

2 2

@ ot =02+ Oq
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Increase in analysis accuracy: Scalar case

@ Erroneous model x; = Ox;_1,
@ true model state xt; = x%;_1 = Bxi_1 +n;,

@ direct observations at time t; with operator h; = 1,

2 2

@ ot =02+ Oq

2 : . . .
Let r = g—‘LQ then the difference in the analysis error variance,
Oi

~2
(0b° + 0op® + 0¢2)(%r + 1)2
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Increase in analysis accuracy: Scalar case

Increase in analysis accuracy more significant,
@ increase in: model error, observation accuracy,

@ decrease in: background accuracy

Increase in
analysis accuracy
0.08 9 %2

Og —0g

Figure : Increase in analysis accuracy for scalar case 3 =1, oo, = 1073
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How do we specify the model error statistics?

Ry for i=k=0
min(i,k) _ - T - )
. Ri+H;| > M QM. |H" fori=k
Rk = =1
H min(i,k)M_ QM T H.T h .
i j— i IV k k otherwise,
Jj=1

How can we specify Q;?
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Estimation of combined error covariance matrix

We have developed a method to estimate R*(; ). Let,

o (d%)i=y;— H:M, . xb,
® (d°)k =yi — H Mo it

[1] E. Andersson: Modelling the temporal evolution of innovation statistics Proceedings of Workshop on recent
developments in data assimilation for atmosphere and ocean, ECMWF, Reading, 2003, pp. 153:164.
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Estimation of combined error covariance matrix

We have developed a method to estimate R*(; ). Let,
o (d°y); =y; — HiMg_,x?,
o (d°)k = yk — HikMo_,ixP.
Then,

Rk = E[(dob)i(dob)kT] —H;Mo_.;BMg_,."H, "

(4)

[1] E. Andersson: Modelling the temporal evolution of innovation statistics Proceedings of Workshop on recent
developments in data assimilation for atmosphere and ocean, ECMWF, Reading, 2003, pp. 153:164.
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Estimation of combined error covariance matrix

We have developed a method to estimate R*(; ). Let,
o (d°); =y, — HiMo_, x>,
o (d°)x = yk — HkMg_ixb.

Then,

Rk = E[(d®)i(d°) '] — HiMo_;BMo_,. TH " (4)

Note the diagonal elements of H;MOH;BMOQ;TH;T can be estimated for
a very large system using the randomisation method [1].

[1] E. Andersson: Modelling the temporal evolution of innovation statistics Proceedings of Workshop on recent
developments in data assimilation for atmosphere and ocean, ECMWF, Reading, 2003, pp. 153:164.
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Obtaining a sample of innovation vectors

For estimation of R*(; ,) we need to evaluate E[(d°,)i(d°,)x "] where,

(d°,)i=yi— H:Mg ., xb.
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Obtaining a sample of innovation vectors

For estimation of R*(; ,) we need to evaluate E[(d°,)i(d°,)x "] where,

(d°,)i=yi— H:Mg ., xb.

Require:

@ sample of background vectors, observation vectors and erroneous
models.
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|dealized coupled nonlinear model

Couples the Lorenz 63 system and 2 linear equations (Molteni et al. [2]),

= —ox+oy+av,

= —XZ+m—y+aw,

xy — bz,

—Qv — k(w —w™) — ay,

< TN X
Il

= Q(w—w*)— kv — ax,

where 0 =10, r =30, b=5%, k=01, Q=7 and w* = 2.

[2] F. Molteni, L. Ferranti, T.N. Palmer, P. Viterbo: A dynamical interpretation of the global response to equatorial Pacific
SST anomalies Journal of climate, vol.6, 1993, pp. 777-795.
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|dealized coupled nonlinear model

Couples the Lorenz 63 system and 2 linear equations (Molteni et al. [2]),

= —ox+oy+av,
= —xz+mrx—-—y+aw,

xy — bz,

—Qv — k(w —w™) — ay,

< TN X
Il

= Q(w—w*)— kv — ax,

(5)

where 0 =10, r =30, b=3, k=0.1, Q= 75 and w* = 2.
@ Runge-Kutta 2nd order method with fixed time step At = 0.01 used
to approximate solution of coupled ODE's.

[2] F. Molteni, L. Ferranti, T.N. Palmer, P. Viterbo: A dynamical interpretation of the global response to equatorial Pacific
SST anomalies Journal of climate, vol.6, 1993, pp. 777-795.
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True idealized coupled nonlinear model

@ True initial conditions on the coupled model attractor:
xto = (—3.4866, —5.7699, 18.341, —10.7175, —7.1902).

We add random forcing at each time-step to obtain the true model state at
the next time-step,

xj = M{i-l}—n(xt,’fl)*ni, i=12,..50,

@ where the model error covariance matrix Q; (i = 1,2, ...,50) is diagonal with
variances set to 0.02, 0.02, 0.2, 0.01, 0.01.
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Numerical experiments: design

@ Assimilation window length of 50 time-steps.

@ Background error covariance matrix B with standard deviations
approximately 10% of the true initial conditions.

@ Direct observations every 10 time-steps with diagonal error covariance
matrix R; in which the standard deviations are approximately 2% of the
maximum absolute value of each respective variable,

@ Perturb the true model states using B and R; respectively to produce
background model state x” and observations y;.
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Numerical experiments: results

Twin experiment: Compare 4DVar analysis accuracy using R* as
opposed to R.

Estimate diagonal entries of R* at observation times:

@ Evaluate sample size of 1,000 innovations (d°,); =y; — H;M,_,x?
(i=10,20,30,40,50).
o Estimate diagonal entries of E[(d°}):(d°5);"].

@ Estimate combined model error and observation error variances using;:

o R*; = E[(d°5)i(d°);"] — HiMo_.;BM_.;TH;"
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Numerical experiments: results

= Analysis RMSE using R u Forecast RMSE using R
u Analysis RMSE using R* u Forecast RMSE using R*
25 12

(a)

1

o8

15

l 0.6 J
1

0a

05

0.2

o o

Figure :  Analysis RMSE and the subsequent RMSE of the analysis trajectories over the

assimilation window over a sample of 100 data assimilation runs.
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Numerical experiments: results

: ?::llv::: Emggﬂ:mq |§* (b) increase in model error (c)increase in model error
@) Y 9 standard deviations by a factor of 2  standard deviations by a factor of 5

25 4 10

EE] °

2 8
3

7

15 25 6

2 5

1 | 15 | ;

3

05 1 ' 2

05 1

o 0 0

x v z w v x ¥ B w v x ¥ B w N

Figure : Results from a sample of 100 data assimilation runs in each of (a), (b) and (c).
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Numerical experiments: results

@ Analysis RMSEusing R | (d) increase in observation error s.d. by a factor of 5,

(a) | “ Analysis RMSEusing R*| decrease in background error s.d. by a factor of 5.
25 045
04
2 035
03
15 025
I 02
: 015
05 1 ot
0.05
0 0

x ¥ : W v x ¥ W

Figure : Results from a sample of 100 data assimilation runs in each of (a) and (d).
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Numerical experiments: summary

When the model used in 4DVar is erroneous, using R* as opposed to R
increases the analysis accuracy at the initial time.

Experimental results have shown the increase is most significant when,
@ the model error is large,
@ the observations are very accurate,

@ the background is very inaccurate.
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Obtaining a sample of innovation vectors operationally

We know:
@ Previously samples of innovation vectors have been collected (in areas
where frequent observations were available) [1].
@ The observational data was collected over short time period, for
example in hourly bins [1].

[1] E. Andersson: Modelling the temporal evolution of innovation statistics Proceedings of Workshop on recent
developments in data assimilation for atmosphere and ocean, ECMWF, Reading, 2003, pp. 153-164. [3] J.M. Brankart et al.: A
generic approach to explicit simulation of uncertainty in the NEMO model Geoscientific Model Development, vol.8, 2015, pp.
1285-1297.
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Obtaining a sample of innovation vectors operationally

We know:

@ Previously samples of innovation vectors have been collected (in areas
where frequent observations were available) [1].

@ The observational data was collected over short time period, for
example in hourly bins [1].

We also know:

@ Ensemble prediction systems represent random error in a model
forecast using stochastic physics [3].

[1] E. Andersson: Modelling the temporal evolution of innovation statistics Proceedings of Workshop on recent
developments in data assimilation for atmosphere and ocean, ECMWF, Reading, 2003, pp. 153-164. [3] J.M. Brankart et al.: A
generic approach to explicit simulation of uncertainty in the NEMO model Geoscientific Model Development, vol.8, 2015, pp.
1285-1297.
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Idea:

@ Use an ensemble prediction system to evolve a sample of background
vectors to the respective times of a sample of observation vectors.
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Idea:

@ Use an ensemble prediction system to evolve a sample of background
vectors to the respective times of a sample of observation vectors.

Considerations:

@ What are the implications of using observations accross a short time
period? Estimation of a time-averaged R*.
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Idea:

@ Use an ensemble prediction system to evolve a sample of background
vectors to the respective times of a sample of observation vectors.

Considerations:

@ What are the implications of using observations accross a short time
period? Estimation of a time-averaged R*.

@ Do the stochastic physics used to run an ensemble of forecasts
account for all random error in the model?
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@ Derived an expression for the true covariance of the error in the
observational cost function term in strong constraint 4DVar in the

presence of model error.

@ This matrix contains both model error and observation error statistics.
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@ Derived an expression for the true covariance of the error in the
observational cost function term in strong constraint 4DVar in the
presence of model error.

@ This matrix contains both model error and observation error statistics.

@ Developed a method to estimate this combined matrix using
diagnostics.
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@ Derived an expression for the true covariance of the error in the
observational cost function term in strong constraint 4DVar in the
presence of model error.

@ This matrix contains both model error and observation error statistics.

@ Developed a method to estimate this combined matrix using
diagnostics.

@ We have shown using the combined model error and observation error
covariance matrix, as opposed to only the observation error
covariance matrix, increases the analysis accuracy.
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@ Derived an expression for the true covariance of the error in the
observational cost function term in strong constraint 4DVar in the
presence of model error.

@ This matrix contains both model error and observation error statistics.

@ Developed a method to estimate this combined matrix using
diagnostics.

@ We have shown using the combined model error and observation error
covariance matrix, as opposed to only the observation error
covariance matrix, increases the analysis accuracy.

@ Application of the method suited to reanalysis, where the objective is
to best estimate the analysis at the initial time and start of an
assimilation window (not beneficially applicable to long term
forecasts).
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Thank you for listening

Any questions?
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