LARGE-EDDY SIMULATIONS OF A WIND TURBINE WAKE ABOVE A FOREST

Josef Schröttle a,c, Zbigniew Piotrowskib, Thomas Gerza, Antonia Englbergera, Andreas Dörnbracka

- Institute for Atmospheric Physics,
 German Aerospace Center (DLR),
 Oberpfaffenhofen, Bavaria, Germany
- Institute of Meteorology and WaterManagement (IMGW), Warsaw, Poland
- **c** Ludwig-Maximilians-Universität, Department of Physics, Munich, Germany

I. From fractal tree canopy turbulence ...

- a) Meassurements at Plant Scale
- b) Immersed Boundaries

II. ... to large-eddy simulations of forest canopy boundary layers ...

- a) Challenges to overcome
- b) Modeling a Forest Canopy
- c) Tow Hydrodynamic Solvers

III. ... with wind turbine wake flow.

- a) Velocity Deficit
- b) Momentum Transport
- c) Turbulent Kinetic Energy
- d) Turbulence Intensity
- e) Eddy dissipation Rate

Pythagoras tree (above) and wind turbines w/ a forest (below)

I) EULAG, LES with Immersed Boundaries

$$\nabla \cdot \mathbf{v} = 0$$

$$\frac{d\mathbf{v}}{dt} = -\nabla \frac{p'}{\rho_b} - \mathbf{g} \frac{\theta'}{\theta_b} + \mathbf{D}^{\mathbf{v}} - \beta(\mathbf{v} - \mathbf{v_F})$$

$$\frac{d\theta'}{dt} = \mathbf{v} \cdot \nabla \theta_e + \mathbf{D}^{\theta} - \beta(\theta - \theta_F)$$

$$\frac{d\mathbf{e}}{dt} = \mathbf{S}(\mathbf{e}) - \beta(\mathbf{e} - \mathbf{e_F})$$

Boussinesq Approximation

$$\rho_{b} = 1.025 \text{ kg/m}^{3}$$

$$\Theta_{p} = 300 \text{ K}$$

$$p_{h} = 1000 \text{ hPa}$$

$$\Theta_{\rm F} = \Theta_{\rm e}(z) + 3.15 \,\mathrm{K}$$

Immersed Boundaries

 $\beta = 2/dt$ and 0 outside forest

Imrsb. w/ a prescribed temp. are an extension to the ones used for 'Building resolv. LES & comparison with windtunnel studies' (Smolarkiewicz et al. JCP 2007)

'Turbulence structure in a diabatically heated forest canopy composed of fractal Pythagoras trees' (Schröttle and Dörnbrack TCFD 2013)

Turbulence from the ground over a scale of 0.1 m up to 100 m with cyclic horiz. boundaries.

II) Forest Parameterization

Is it possible to resolve the turbulence structure correct over such a wide range of scales with realistically sized wind turbines by state-of-the-art multiscale numerical simulations?

X

Scales range from 10 cm of canopy elements to the domain length of 1 km. \rightarrow n = 10000 Currently, this is computationally very demanding!

X

Three dimensional fields of the real porosity of various forests are rarely available!

II) Field-Scale Approach

"Forest as a **porous body** of horizontally uniform **leaf** area density: LAD(z) with constant drag coefficient c_{for} ." (Shaw & Schumann 1992)

$$\boldsymbol{F}_{\boldsymbol{D}} = -c_{for}a(z)V\boldsymbol{v}$$

Field-scale simulations, where resolution is of O(1 m)

- Shaw & Schumann (1992)
- Dupont & Brunet (2009)
- Finnigan, Shaw & Patton (2009)
- Schlegel et al. (2012, 2014)
- Nebenfür & Davidson (2015)
- Patton et al. (2016)

II) Forest Parameterization

neutral	convective	stable
Bohrer et al. (2009) Dupont & Brunet (2011) IMB Dörnbrack (2008) Finnigan et al. (2009) Kanani et al. (2015) Schlegel et al. (2012, 2014) Shaw & Patton (2003) Shaw & Schumann (1992) Nebenf. & Davidson (2015) Lopes et al. (2015)	Bohrer et al. (2009) Kanani et al. (2015) Shaw & Schumann (1992) Nebenf. & Davidson (2015) Patton et al. (2016) s i m u l a t i o	Kanani et al. (2015) IMB Schröttle & Dörnbrack (2013) Nebenf. & Davidson (2015) n s
Brunet et al. (1994) Shaw (1988) Kanani et al. (2015) o b s	Bohrer (2009) Kanani et al. (2015) e r v a t i o n s	Gao (1989) Shaw (1988) Arnqvist et al. (2015) Kanani et al. (2015)

II) Concept of Leaf Area Density

Idealized 1 D

h = 20 m in the paper byShaw & Schumann (BLM 1992)

Measured 3 D

Schlegel et al. (BLM 2012, 2014)

Probability area density (x, y, z)

$$[PAD] = m^2 / m^3$$

II) Turbulence Upstream of the Wind Turbine

Is it possible to resolve the turbulence structure correct in the inflow of one realistically sized wind turbine by state-of-the-art multiscale numerical simulations?

The forest can be simulated by using the Shaw & Schumann (1992) forest parameterization.

Three dimensional fields of the real porosity of various forests furthermore exist and can be the basis for large-eddy simulations!

The simulation can not run in cyclic boundary conditions as in forest flow studies (Dupont and Brunet, JFM 2009) as the wake extends over **20** diameters **D** in streamwise direction

WAKE STRUCTURE IN TURBULENCE

How should we model the turbulent inflow in large-eddy simulations?

Paper for *Torque 2016* Conference in Munich, October (2016)

Neutral plane wall boundary layer turbulence ...

cyclic boundaries

... with a wind turbine.

open boundaries

II) EULAG, Large-eddy Simulation

With two hydrodynamic flow solvers: a & b

$$\nabla \cdot \boldsymbol{v}^{a,b} = 0$$

$$\frac{d\mathbf{v}^{a,b}}{dt} = -\nabla \pi^{a,b} + \mathbf{D}(v^{a,b}) - c_{for} a V^{a,b} \mathbf{v}^{a,b} + \mathbf{F}_{turbine}^{b}$$

$$\frac{de^{a,b}}{dt} = S(e^{a,b}) - 2\frac{e^{a,b}}{\tau}$$

Boundary Conditions

- a) cyclic
- b) open

Shaw & Schumann (1992) Forest

$$\tau = (c_{for} a V)^{-1}$$
 as time scale

$$[\tau] = s$$

as leaf area density

$$[a] = m^2 / m^3$$

$$V(x, y, z, t) = (u^2 + v^2 + w^2)^{1/2}$$
 as scalar velocity

Wind turbine

$$\mathbf{F}_{turbine}^{b} = -\mathbf{e}_{x} c_{D} U^{2} / \Delta x$$

Instantaneous Streamwise Velocity *u(x,y)*

Horizontal fields 2 m above the ground / forest canopy reveal coherent streaks of low momentum of different shape and magnitude.

Fourier Analysis

Fourier Analysis

Instantaneous Streamwise Velocity u(x,z)

Instantaneous Wake Structure

III) Wake Structure

Mean Streamwise Velocity $\langle u(x,z) \rangle$

The wind turbine wake recovers over a shorter distance above the forest.

III) Wake Structure in the Mean

Mean Momentum Flux <u'w'>

Neutral plane wall boundary layer

The momentum flux is stronger above the forest.

III) Wake Structure in the Mean

Subgrid scale Turbulent Kinetic Energy <e(x,z)>

The wind turbine wake is asymmetric above the forest.

PROPERTIES OF WAKE QUANTITIES & TURBULENCE

Velocity deficit

$$\Delta U = \frac{U_{hub} - U}{U_{hub}}$$

Aitken et al. (2014b)

Added Turbul. Intensity

$$\Delta I = \sigma_{u,m} / U$$

+ LES by Jimenez et al. (2007)

Eddy Dissip. Rate

$$\epsilon = \langle e \rangle^{3/2} / dz$$

range agrees with measurements by Lundquist (2015)

IV) Conclusions from Large-eddy Simulations of a Wind Turbine Wake above a Forest

- (1) The **two hydrodynamic solvers** were **successfully applied** in EULAG.
- (2) Various kinds of atmospheric turbulence can be simulated upstream of a wind turbine.
- (3) The earlier recovery of the wake velocity deficit ΔU above the forest allows the conclusion that more wind energy can be harvested by the cost of higher loads on the wind turbine blades above the forest.
- (4) Wind turbine wake flow was simulated for the **first time with LESs** above a forest.

Thank you for your attention!

