Towards Exascale Computing with
the Atmospheric Model NUMA

Andreas Muller,
Daniel S. Abdi,
Michal Kopera,
Lucas Wilcox,

Francis X. Giraldo

Department of Applied Mathematics
Naval Postgraduate School, Monterey (California), USA

Tim Warburton

Virginia Tech
Blacksburg (Virginia), USA

e NUMA = Non-hydrostatic Unified Model of
the Atmosphere

e dynamical core inside the Navy’s
next generation weather
prediction system NEPTUNE
(Navy’s Environment Prediction
sysTem Using the Numa Engine

)
e developed by Prof. Francis X. ﬂ UI I lO
Giraldo and generations of

postdocs

e NOAA: HIWPP project plan: Goal for 2020:

~ 3km — 3.5km global resolution within operational
requirements

e NOAA: HIWPP project plan: Goal for 2020:

~ 3km — 3.5km global resolution within operational
requirements

e Achieved with NUMA: baroclinic wave test case at
3.0km within 4.15 minutes per one day forecast on
supercomputer Mira

double precision, no shallow atmosphere approx.,
arbitrary terrain, IMEX in the vertical

e NOAA: HIWPP project plan: Goal for 2020:

~ 3km — 3.5km global resolution within operational
requirements

e Achieved with NUMA: baroclinic wave test case at
3.0km within 4.15 minutes per one day forecast on
supercomputer Mira

double precision, no shallow atmosphere approx.,
arbitrary terrain, IMEX in the vertical

o Expect: 2km by doing more optimizations

Communication between processors _.* “\,J

4th order Finite Difference

+

Communication between processors _.* “\,J

4th order Finite Difference

HH

CPU | CPU 2

Communication between processors . *\\?,:[

compact stencil methods

4th order Finite Difference (like in NUMA)

HH

CPU | CPU 2

Communication between processors _.* '-\\,J

.. : compact stencil methods
4th order Finite Difference P

(like in NUMA)
|
|
|
|
CPU | CPU 2 CPU | CPU 2
(7

)

Communication between processors . '-"\\([

. : compact stencil methods
4th order Finite Difference (like in NUMA)

Abdun |

\ NUMA should scale extremely well

CPU | CPU 2 CPU | CPU 2

Fastest Supercomputers of the World ‘”’\\’J ‘

according to top500.org

NAME COUNTRY TYPE PEAK (PFLOPS)
1 TaihuLight China Sunway 125.4

2 Tianhe-2 China Intel Xeon Phi 54.9

3 Titan USA NVIDIA GPU 27 .1

4 Sequoia USA IBM BlueGene 20.1

5 K computer Japan Fujitsu CPU 11.2

6 Mira USA IBM BlueGene

http://top500.org

Fastest Supercomputers of the World % = 4

according to top500.org

NAME COUNTRY TYPE PEAK (PFLOPS)

3 Titan USA NVIDIA GPU 27.1

6 Mira USA IBM BlueGene 10 Qe
i PF\OPS -

‘ \ 0\5 floating pO\nt
OPS Per SeC

http://top500.org

overview

e Mira: Blue Gene
strategy: optimize one setup for
one specific computer

e Titan: GPUs

strategy: keep all options,
portability on CPUs and GPUs

e |ntel Knights Landing

Mira: Blue Gene

optimize one setup for this specific computer

Mira

Which convergence order to use?

L2-error of pot. temperature for 2D rising bubble with viscosity y=0.1m?/s

Ax: average distance between grid points

1072

—l
<
W

A’
E=
N
e
O
| -
@)
-
®
Al
—

—h
O
1N

convergence order = p + |

10’
AX/m

Which convergence order to use?

L2-error of pot. temperature for 2D rising bubble with viscosity y=0.1m?/s

Ax: average distance between grid points

L: smallest scale of the flow A//EE

=

1072

Ax >> L

—l
<
W

Ax = L

A’
E=
N
e
O
| -
@)
-
®
Al
—

—h
O
1N

convergence order = p + |

10’
AX/m

Which convergence order to use?

L2-error of pot. temperature for 2D rising bubble with viscosity y=0.1m?/s

Ax: average distance between grid points

L: smallest scale of the flow A//EE

=

Ax >> L

A’
E=
N
e
O
| -
@)
-
®
Al
—

different polynomial orders should be
compared at same Ax

10’
AX/m

Which convergence order to use?

theoretical performance model for fixed Ax

runtime per
timestep

o
Y

o
o

n
©
c
O
&)
O
w
£
-
O
-
=)
O
w
O
e
()
=
-

runtime per timestep in seconds
°
N

o
(V)

o
o

7

convergence order

5 6 7 8

convergence order

Measurements: roofline plot “'“\'J '
rising bubble test case on Mira -

—attainable O timeloop A createrhs| |

_ blue:
‘peak GFlops entire
' timeloop

red: main
computational
kernel

)
o
O
c
.
)
ol
(Vg
~~
(Vs
ol
O
LL.
O

data points:
different
optimization

nUro stages

2

10" 10
arithmetic intensity (Flops/Byte)

Mira

Strong scaling with NUMA

1.8 billion grid points (3.0km horizontal, 31 levels vertical)

N
6}
o

99.1%
strong scaling

efficiency

N
o
o

>
®©
yo)
iy
O
ke
o
©
=
-
@
o
%)
>
®©
yo)
[
- 15
o
&

13.14M threads|

number of threads

12.1% of theoretical peak (flops)

i total

2 filter

i createrhs
- IMEX

@ .21 PFlops on
- NUMo entire Mira |

baroclinic instability, p=3, 3.0km horizontal resolution
I I I I I I l I I I I I I I I l I

8

7))
Qo
O
[rm—
X
qv]
o
o
-
@)
R

10° 10°
number of threads

Where are we heading? "’\\’J
dynamics within 4.5 minutes runtime per one day forecast -

baroclinic instability, p=3, 31 vertical layers, 128 columns per node

107: | | | ! | | |]
numa
P ; current :
2 version -
S10°F E
(<) N]
E |]
104? E
1031 é é é {O 25 36 5b 100

resolution in km

Where are we heading?

dynamics within 4.5 minutes runtime per one day forecast

baroclinic instability, p=3, 31 vertical layers, 128 columns per node

107: : ! | | ! | | |
o5l NUMao
o | current
e version
5 10°F E
2
E
: fully
10* ¢ optimized ;
1031 é é é {O 26 36 Sb 100

resolution in km

Where are we heading? vrﬂﬁ\\ﬁl' '
dynamics within 4.5 minutes runtime per one day forecast e

baroclinic instability, p=3, 31 vertical layers, 128 columns per node

R

current
version

»n
©
©
o
| -
L
i)
—
o
-
o
@)
&
-
C

fully
optimized

i 810C eloiny

10
resolution in km

Titan: GPUs

keep all options, portability on CPUs and GPUs

Titan

18,688 CPU nodes
(16 cores each) network

18,688 NVIDIA GPUs
(2,688 CUDA cores each)

Mira Titan KNL

OCCAZ2: unified threading model ""*\’J

(slide: courtesy of Lucas Wilcox and Tim Warburton)

Portability & extensibility: device independent kernel language (or
OpenCL / CUDA) and native host APIs.

-

Host Language [pThread

CPU Processors

Xeon Phi

[A) C_)penMP

S S Intel COI P D GPUS

\
Kernel Language

\ OCCA (OKL

——

N e D
NVIDIA. WEES

& <
»
| CUDA. | | "oodnct

cTJ“Si'C"

Available at: https://github.com/tcew/OCCA2

Titan

Floopy/OCCA2 code !

(slide: courtesy of Lucas Wilcox and Tim Warburton) -

allocate(a(1:entries), b(1:entries), ab(1:entries), stat = alloc_err)
if (alloc_err /= 0) stop "*** Not enough memory **x"

do i=1,entries
a(i) = i-1
b(i) = 2-i
ab(i) = 0
end do

device = occaGetDevice(mode, platformID, devicelD)
occaDeviceMalloc(device, int(entries,8)*4_8)

a
b occaDeviceMalloc(device, int(entries,8)*4_8)
ab = occaDeviceMalloc(device, int(entries,8)*4_8)

0
0
0_

addVectors = occaBuildKernelFromFloopy(device, "addVectors.floopy", "addVectors", "")

dims 1
innerDim = 16

call occaKernelSetAllWorkingDims(addVectors, dims, &
int(innerDim,8), 1.8, 1_8, &
int((entries + innerDim - 1)/innerDim,8), 1_8, 1_8)

call occaCopyPtrToMem(o_a, a(1), int(entries,8)*4_8, 0_8);
call occaCopyPtrToMem(o_b, b(1));

call occaKernelRun(addVectors, occaTypeMem_t(entries), o_a, o_b, o_ab)

call occaCopyMemToPtr(ab(1), o_ab);

print *,"a = ", a(2)
print *,"b = ", b(:)
print *,"ab = ", ab(:)

deallocate(a, b, ab, stat = alloc_err)
if (alloc_err /= 0) stop "*** deallocation not successful ***"

Floopy/OCCA2 code [

(slide: courtesy of Lucas Wilcox and Tim Warburton) -

allocate(a(1:entries), b(1:entries), ab(1:entries), stat = alloc_err)
if (alloc_err /= 0) stop "*** Not enough memory **x"

do i=1,entries
a(i) = i-1
b(i) = 2-i
ab(i) = 0
end do

device = occaGetDevice(mode, platformID, deviceIl subroutine addVectnr‘s(entries, a, b, ah)
a = occaDeviceMalloc(device, int(entries,8)*4 1mplicit none

b occaDeviceMalloc(device, int(entries,8)*4
ab = occaDeviceMalloc(device, int(entries,8)*4 integer*4 entries

0
0
0_

addVectors = occaBuildKernelFromFloopy(device, " real*4 a(entries), b(entries), ab(entries)

d. 1 L L]
imrnim 16 do 1 =1, entries

. | ab(i) = a(i) + b(i)
call occaKernelSetAllWorkingDims(addVectors, dimg end do

int(innerDim,8)

int((entries + end

call occaCopyPtrToMem(o_a, a(1), int(entries,8)*A .
call occaCopyPtrToMem(o_b, b(1)); 1$1oopy begin transform
I

call occaKernelRun(addVectors, occaTypeMem_t(ent

| addVectors = lp.split_iname(addVectors, "i", 16,
call occaCopyMemToPtr(ab(1), o_ab); ! outer_tag="g.0", inner_tag="1.0")
I

print *,"b = ", b(:) 1S1oopy end transform
print *,"ab = ", ab(:)

print *,"a = ", a(2)

deallocate(a, b, ab, stat = alloc_err)
if (alloc_err /= 0) stop "*** deallocation not successful ***"

Weak scaling up to 16,384 GPUs (88% of Titan)

using 900 elements per GPU, polynomial order 8 (up to 10.7 billion grid points) =

90% weak scaling
efficiency using DG with
communication overlap |

~~
2
-
>
o
c
Ig
o
=
[-—
L

| =0~ CG nooverlap
| =0~ DG nooverlap
| =~ DG overlap

64 128 256 512 1024 2048 4096 8192 16384
No of GPUs

Titan

roofline plot: single precision
on the NVIDIA K20X GPU on Titan

Y
)
o
o
—J
™
O

'| —=— Horizontal volume kernel
| —e— Vertical volume kernel

Update kernel

'| —— Project kernel
| —— Roofline

3520 GFLOPS/s

12

convergence
order

&

GFLOPS/GB

Titan

roofline plot: double precision
on the NVIDIA K20X GPU on Titan

@
n
o
o
—
L
O

| —=— Horizontal volume kernel
| —e— Vertical volume kernel

Update kernel

'| —— Project kernel

| — Roofline

1170 GFLOPS/s

convergence

order

&

GFLOPS/GB

Titan

some more results from Titan , “\.J

e GPU: up to 15 times faster than original version
on one CPU node for single precision (CAM-SE
and other models: less than 5x speed-up)

o CPU: Sing|e CPU node GPU
precision about c|> 6?5?&272 NVIDIA K20X
30% faster than P
double peal 141 GFlops/s | |.31 TFlops/s

performance

e GPU: single |

peak
about 2x faster | bandwidth 32 OBl 208 GBS
than double peak energy | I5W 235W

NSl
{ Titan J

Knights Landing

Why is this so exciting?

e 64 cores (Mira: 64 hardware threads)

e cach Knights Landing chip has 16GB MCDRAM
with 440G B/s memory bandwidth

= more than 15 times faster than Mira

e Aurora (successor of Mira, expected in 2018): more
than 50k Knights Landing nodes

= more nodes than Mira

e overall: Aurora should allow us to run the same
simulations like on Mira but 15 times faster

KNL

Knights Landing: roofline plot

OCCA version of NUMA

3000 GFLOPS/s

4
n
o
o
—
LL
Q)

—{ - Volume kernel

—O- Diffusion kernel

-O-Update Kernel of ARK

—x3-create_rhs_gmres_no_schur :
create |hs_gmres_no_schur_set2c |]
extract_g_gmres_no_schur

—— Roofline

10° 10 10°

GFLOPS/GB

Knights Landing: weak scaling

work in progress

Q
o
S’
>
3)
c
Q@
o
=
)
o)
=
‘©
3]
7p

6 8 10
Number of KNL nodes

Summary

e Mira:

— 3.0km baroclinic instability within 4.15 minutes runtime
per one day forecast

— 99.1% strong scaling efficiency on Mira, 1.21 PFlops
e Titan:

— 90% weak scaling efficiency on 16,384 GPUs

— GPU: runs up to 15x faster than on one CPU node
¢ |ntel Knights Landing:

— looks good but still room for improvement

Thank you for your attention!

