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e NUMA = Non-hydrostatic Unified Model of
the Atmosphere

e dynamical core inside the Navy’s
next generation weather
prediction system NEPTUNE
(Navy’s Environment Prediction
sysTem Using the Numa Engine

)
e developed by Prof. Francis X. ﬂ UI I lO
Giraldo and generations of

postdocs




e NOAA: HIWPP project plan: Goal for 2020:

~ 3km — 3.5km global resolution within operational
requirements
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e NOAA: HIWPP project plan: Goal for 2020:

~ 3km — 3.5km global resolution within operational
requirements

e Achieved with NUMA: baroclinic wave test case at
3.0km within 4.15 minutes per one day forecast on
supercomputer Mira

double precision, no shallow atmosphere approx.,
arbitrary terrain, IMEX in the vertical

o Expect: 2km by doing more optimizations
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Fastest Supercomputers of the World ‘”’\\’J ‘

according to top500.org

# NAME COUNTRY TYPE PEAK (PFLOPS)
1 TaihuLight  China Sunway 125.4

2 Tianhe-2 China Intel Xeon Phi  54.9

3 Titan USA NVIDIA GPU 27 .1

4 Sequoia USA IBM BlueGene  20.1

5 K computer Japan Fujitsu CPU 11.2

6 Mira USA IBM BlueGene



http://top500.org

Fastest Supercomputers of the World % = 4

according to top500.org

# NAME COUNTRY TYPE PEAK (PFLOPS)

3 Titan USA NVIDIA GPU 27.1

6 Mira USA IBM BlueGene 10 Qe
i PF\OPS -

‘ \ 0\5 floating pO\nt
OPS Per SeC



http://top500.org

overview

e Mira: Blue Gene
strategy: optimize one setup for
one specific computer

e Titan: GPUs

strategy: keep all options,
portability on CPUs and GPUs

e |ntel Knights Landing



Mira: Blue Gene

optimize one setup for this specific computer

Mira



Which convergence order to use?

L2-error of pot. temperature for 2D rising bubble with viscosity y=0.1m?/s

Ax: average distance between grid points
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Which convergence order to use?

L2-error of pot. temperature for 2D rising bubble with viscosity y=0.1m?/s

Ax: average distance between grid points

L: smallest scale of the flow A//EE
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Which convergence order to use?

L2-error of pot. temperature for 2D rising bubble with viscosity y=0.1m?/s

Ax: average distance between grid points

L: smallest scale of the flow A//EE

=

Ax >> L

A’
E=
N
e
O
| -
@)
| -
| -
®
Al
—

different polynomial orders should be
compared at same Ax

10’
AX/m




Which convergence order to use?

theoretical performance model for fixed Ax

runtime per
timestep
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Measurements: roofline plot “'“\'J '
rising bubble test case on Mira -
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Strong scaling with NUMA

1.8 billion grid points (3.0km horizontal, 31 levels vertical)
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12.1% of theoretical peak (flops)

i total

2 filter

i createrhs
- IMEX

@ .21 PFlops on
- NUMo entire Mira |

baroclinic instability, p=3, 3.0km horizontal resolution
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Where are we heading? "’\\’J
dynamics within 4.5 minutes runtime per one day forecast -

baroclinic instability, p=3, 31 vertical layers, 128 columns per node
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Where are we heading?

dynamics within 4.5 minutes runtime per one day forecast

baroclinic instability, p=3, 31 vertical layers, 128 columns per node
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Where are we heading? vrﬂﬁ\\ﬁl' '
dynamics within 4.5 minutes runtime per one day forecast e

baroclinic instability, p=3, 31 vertical layers, 128 columns per node
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Titan: GPUs

keep all options, portability on CPUs and GPUs

Titan



18,688 CPU nodes
(16 cores each) network

18,688 NVIDIA GPUs
(2,688 CUDA cores each)

Mira Titan KNL



OCCAZ2: unified threading model ""*\’J

(slide: courtesy of Lucas Wilcox and Tim Warburton)

Portability & extensibility: device independent kernel language (or
OpenCL / CUDA) and native host APIs.
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Available at: https://github.com/tcew/OCCA2

Titan



Floopy/OCCA2 code !

(slide: courtesy of Lucas Wilcox and Tim Warburton) -

allocate(a(1:entries), b(1:entries), ab(1:entries), stat = alloc_err)
if (alloc_err /= 0) stop "*** Not enough memory **x"

do i=1,entries
a(i) = i-1
b(i) = 2-i
ab(i) = 0
end do

device = occaGetDevice(mode, platformID, devicelD)
occaDeviceMalloc(device, int(entries,8)*4_8)

a
b occaDeviceMalloc(device, int(entries,8)*4_8)
ab = occaDeviceMalloc(device, int(entries,8)*4_8)

0
0
0_

addVectors = occaBuildKernelFromFloopy(device, "addVectors.floopy", "addVectors", "")

dims 1
innerDim = 16

call occaKernelSetAllWorkingDims(addVectors, dims, &
int(innerDim,8), 1.8, 1_8, &
int((entries + innerDim - 1)/innerDim,8), 1_8, 1_8)

call occaCopyPtrToMem(o_a, a(1), int(entries,8)*4_8, 0_8);
call occaCopyPtrToMem(o_b, b(1));

call occaKernelRun(addVectors, occaTypeMem_t(entries), o_a, o_b, o_ab)

call occaCopyMemToPtr(ab(1), o_ab);

print *,"a = ", a(2)
print *,"b = ", b(:)
print *,"ab = ", ab(:)

deallocate(a, b, ab, stat = alloc_err)
if (alloc_err /= 0) stop "*** deallocation not successful ***"




Floopy/OCCA2 code [

(slide: courtesy of Lucas Wilcox and Tim Warburton) -

allocate(a(1:entries), b(1:entries), ab(1:entries), stat = alloc_err)
if (alloc_err /= 0) stop "*** Not enough memory **x"

do i=1,entries
a(i) = i-1
b(i) = 2-i
ab(i) = 0
end do

device = occaGetDevice(mode, platformID, deviceIl subroutine addVectnr‘s(entries, a, b, ah)
a = occaDeviceMalloc(device, int(entries,8)*4 1mplicit none

b occaDeviceMalloc(device, int(entries,8)*4
ab = occaDeviceMalloc(device, int(entries,8)*4 integer*4 entries

0
0
0_

addVectors = occaBuildKernelFromFloopy(device, " real*4 a(entries), b(entries), ab(entries)

d. 1 L L ]
imrnim 16 do 1 =1, entries

. | ab(i) = a(i) + b(i)
call occaKernelSetAllWorkingDims(addVectors, dimg end do

int(innerDim,8)

int((entries + end

call occaCopyPtrToMem(o_a, a(1), int(entries,8)*A .
call occaCopyPtrToMem(o_b, b(1)); 1$1oopy begin transform
I

call occaKernelRun(addVectors, occaTypeMem_t(ent

| addVectors = lp.split_iname(addVectors, "i", 16,
call occaCopyMemToPtr(ab(1), o_ab); ! outer_tag="g.0", inner_tag="1.0")
I

print *,"b = ", b(:) 1S1oopy end transform
print *,"ab = ", ab(:)

print *,"a = ", a(2)

deallocate(a, b, ab, stat = alloc_err)
if (alloc_err /= 0) stop "*** deallocation not successful ***"




Weak scaling up to 16,384 GPUs (88% of Titan)

using 900 elements per GPU, polynomial order 8 (up to 10.7 billion grid points) =

90% weak scaling
efficiency using DG with
communication overlap |
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roofline plot: single precision
on the NVIDIA K20X GPU on Titan
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roofline plot: double precision
on the NVIDIA K20X GPU on Titan
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some more results from Titan , “\.J

e GPU: up to 15 times faster than original version
on one CPU node for single precision (CAM-SE
and other models: less than 5x speed-up)

o CPU: Sing|e CPU node GPU
precision about c|> 6?5?&272 NVIDIA K20X
30% faster than P
double peal 141 GFlops/s | |.31 TFlops/s

performance

e GPU: single |

peak
about 2x faster | bandwidth 32 OBl 208 GBS
than double peak energy | I5W 235W

NSl
{ Titan J






Knights Landing

Why is this so exciting?

e 64 cores (Mira: 64 hardware threads)

e cach Knights Landing chip has 16GB MCDRAM
with 440G B/s memory bandwidth

= more than 15 times faster than Mira

e Aurora (successor of Mira, expected in 2018): more
than 50k Knights Landing nodes

= more nodes than Mira

e overall: Aurora should allow us to run the same
simulations like on Mira but 15 times faster

KNL




Knights Landing: roofline plot

OCCA version of NUMA

3000 GFLOPS/s
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Knights Landing: weak scaling

work in progress
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Summary

e Mira:

— 3.0km baroclinic instability within 4.15 minutes runtime
per one day forecast

— 99.1% strong scaling efficiency on Mira, 1.21 PFlops
e Titan:

— 90% weak scaling efficiency on 16,384 GPUs

— GPU: runs up to 15x faster than on one CPU node
¢ |ntel Knights Landing:

— looks good but still room for improvement




Thank you for your attention!



