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SST biases (K)
Coupled to ocean (historical)

Heat flux biases (W/m2)
Forced by SSTs (amip)}

L E=L ρCD‖V‖[
∂qsat

∂q
(T s−T a )+qsat (T a )(1−R H )]L E=L ρCD‖V‖(qsat (T s)−qa )

δL E=−L ρCD‖V‖qsat (T a)δR H

CMIP5 multi-model mean

1/ Atmospheric origin of the Eastern Tropical Ocean systematic warm biases1/ Atmospheric origin of the Eastern Tropical Ocean systematic warm biases

Hourdin et al, 2015, GRL

RH bias with respect to Da Silva obs

Latent heat flux LE :
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Index for
Eastern Tropical Ocean Anomaly

1/ Atmospheric origin of the Eastern Tropical Ocean systematic warm biases1/ Atmospheric origin of the Eastern Tropical Ocean systematic warm biases

→ → Strong warm biases in coupled models are assiociated with overestimated radiative Strong warm biases in coupled models are assiociated with overestimated radiative 
fluxes and/or underestimated evaporative coolingfluxes and/or underestimated evaporative cooling
→ → Underestimated evaporation due to overestimated near surface RH in terms of ETOAUnderestimated evaporation due to overestimated near surface RH in terms of ETOA

LE obs

Rad obs
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L E=L ρCD‖V‖[
∂qsat

∂q
(T s−T a )+qsat (T a )(1−R H )]

1/ Atmospheric origin of the Eastern Tropical Ocean systematic warm biases1/ Atmospheric origin of the Eastern Tropical Ocean systematic warm biases

CNRM-CM5IPSL-CM5A-MR
δL E

Exact

Approximate
δL E=δL E RH+δL Edyn+δL E qsat+δL ETs−Ta

δL E dyn=
∂L E
∂‖V‖

δ‖V‖

Bias decomposition

→ → Evaporative biases (RH) dominate East-West contrasts and are quite systematicEvaporative biases (RH) dominate East-West contrasts and are quite systematic
→ → Dynamical contribution is more zonal and variable from model to modelDynamical contribution is more zonal and variable from model to model

δL E RH=
∂L E
∂RH

δRH
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 (K) W'' (K m/s) B U (m/s)

Comparison with large eddy simulations with the 
NCAR model, Moeng et al, 1992, Ayotte et al. 
1999.)
Idealized convective boundary layer

Forcing : surface heat flux w''0=0.24 Km/s

                geostrophic wind u=10m/s

Combination of a TKE scheme (Mellor and Yamada MY, 
Yamada 1983) and mass flux scheme of the orgfanized 
structures of the convective boundary layer

MY
Thermals
Total

MY+Thermals

The “thermal plume model”The “thermal plume model”
Hourdin et al., 2002, JAS
Similar to the EDMF approach introduced at
about the same time by Siebesma and collab.
Rediscovering a proposition by Chatfield and Brost 1987

2/ Boundary layer convective transport controlling near surface humidity2/ Boundary layer convective transport controlling near surface humidity

MY+Thermals

MY (alone)
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2/ Boundary layer convective transport controlling near surface humidity2/ Boundary layer convective transport controlling near surface humidity

Extension to cumulus clouds :
Rio et al., 2008, JAS
Couvreux et al., 2010, Rio et al. 2010, BLM

Jam et al, 2013, BLM :
Modification of detrainment to get stratocumulus
1D/LES evaluation of cloud cover

Fire test case Sandu « transition case »

LES

Modified

Previous
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LMDZ5A
(or IPSL-CM5A)

No thermals

LMDZ5B
Thermals activation

Except for strato-cumilus

LMDZ6.0
Thermals activation

everywhere

LMDZ6.1
Thermals activation

Everywhere + special
Treatment for strato 

Cumulus clouds

Observations

Da Silva

Calipso GOCCP

Relative humidity bias (%)

Total cloud cover (%)

Results from atmospheric simulations forced by climatic sea surface temperature (amip)
: activating thermal plumes
: ETO region
: Detrainement modifié

2/ Boundary layer convective transport controlling near surface humidity2/ Boundary layer convective transport controlling near surface humidity

→ → Convective boundary layer transport dries the surfaceConvective boundary layer transport dries the surface
→ → Subtile : you need convective transport without destroying strato-cumulusSubtile : you need convective transport without destroying strato-cumulus
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Nudged

LMDZ5A
without

Direct comparison of the model (300 km 
resol) 2m specific humidiy, with AMMA-

Catch site obervations Bamba  
(1.5W, 15.3N), year 2006

Free 
ERAInterim

Obs

LMDZ5B-LMDZ5A

LMDZ5A
LMDZ5B

With
thermals

∂ X
∂ t

=M (X )+
∂ X a

−X
τ

2/ Boundary layer convective transport controlling near surface humidity2/ Boundary layer convective transport controlling near surface humidity

Control of near surface humidity over Sahel
LMDZ simulations nudged by ERA-I winds
 = 6 hours

time-z plot of specific humidity

→ → Convective boundary layer transport dries the surfaceConvective boundary layer transport dries the surface
→ → Nudging allows to learn from direct comparison with site observationsNudging allows to learn from direct comparison with site observations
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Impact of the new parametrization on dust emissions (version with interactive dust)
Simulations with standard (A) and new (B) physics (with thermals)

Dust emissions Mars 2006, g/m²/s, simulations nudged with ERA-I winds

Mean diurnal cycle of near 10m wind speed, m/s
Mbour Cinzana Banizoumbou

3/ Boundary layer convective transport controlling 3/ Boundary layer convective transport controlling momentummomentum and dust lifting and dust lifting

Non linear wind dependency of emission :

→ → The new physics reinforce emissions by reinforcing the morning wind maxThe new physics reinforce emissions by reinforcing the morning wind max
→ → Diurnal cycle of wind speed improved, even compared to ERA-I used for nudgingDiurnal cycle of wind speed improved, even compared to ERA-I used for nudging

Hourdin et al., 2015, ACP

Standard without
LMDZ5A

New with thermal
plume model
LMDZ5B
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Colors : « thermal plume » tendency
(non local transport) in ||V|| (m/s/day)
Black contours : ||V|| (m/s)
W in thermal plumes (red arrows)  

Vertical wind speed ~ 1 m/s 
→subsidence 10 cm/s 
→advective time 2000s / 200m  

U10m

U850hPa

Tendency in U 1st layer : Thermals, diffus, total

∂ f ĉ
∂ z

=e c−d ĉ

x 1-

∂ f û
∂z

=e u−d û +C (u −û )

∂ f
∂z

=e−d , f =ρα w

Plume conservation equations

Pressure drag
plume / environment

f d

e

u

∂ρu
∂ t

=−
∂(ρw ' u ' )

∂z
ρw ' c '=−ρKz

∂u
∂z

+ f (û −u )

Vertical transport of momentum

ĉ
û

3/ Boundary layer convective transport controlling 3/ Boundary layer convective transport controlling momentummomentum and dust lifting and dust lifting
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|| v ||

|| v ||

Precipitations (cm/day)

Surface wind (m/s)

Latent heat flux (W/m2)

Contribution from meso-scale wind

Increase of surface fluxes by meso-scale circulations, issued from Toga-Coare experiment
(Redelsperger et al., 2000)

4/ Toward inclusion of gustiness in the surface drag computation4/ Toward inclusion of gustiness in the surface drag computation
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→ Emanuel scheme for deep convection
→ Parameterization of cold pools or wakes (Grandpeix and Lafore 2010)
→ Convective closure and trigering based on sub cloud processes
In LMDZ : we use estimations of W' coming from thermal plumes and cold 
pool parametrization (Catherine Rio, Phd)
→ Allows to shift the diurnal cycle of deep convection with a max in late 
afternoon ( Rio et al., 2009, GRL)

Cold pools,Wakes
Density current

Gust
 front

Air lifting
Precipitating
downdrafts

W'
wkW'

th

z

v

CIN

Mb

W'
th

W'
wk

Triggering : max (ALEth,ALEwk) > |CIN|  

K:  Available lifting energy
ALE in J/kg, scaling with w'2.

P:  Available lifting power
ALP in W/m², scaling with w'3.

Closure : MB=f(ALPth+ALPwk)

Schematic view of
Emanuel (1993) scheme
Deep convection

““New Physics” : thermal plumes + cold pools + convection controlled by sub-cloud processesNew Physics” : thermal plumes + cold pools + convection controlled by sub-cloud processes

4/ Toward inclusion of gustinness in the surface drag computation4/ Toward inclusion of gustinness in the surface drag computation
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Ueff
2 = U10m

2 + β2 ζ 2ALEthermals + α 2ALEcold pools

ALE = Available lifting energy, scaling with w'2

4/ Toward inclusion of gustiness in the surface drag computation4/ Toward inclusion of gustiness in the surface drag computation

Wind (U10m)
Wind + gust thermals
Wind + gust cold pools
Wind + total gust

Ueff
m/s
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4/ Toward inclusion of gustiness in the surface drag computation4/ Toward inclusion of gustiness in the surface drag computation

Old formulation :
z0h=z0m
Correction of Cq for weak winds
+ thresholds (min) on wind speed

Cd : drag coef
Cq : Exchange coef for moisture

Charnock

Z 0m=0.018
u x

2

g
+

0.11∗14e-6
ux

Z 0h=
0.4∗14e-6

ux

With gustiness

Weak wind correction (Miller, 1992)

Fudge factor 0.6 for evap

Cd

‖V‖,m /s

2           6         10        14

2

1

Cd

‖V‖,m /s

2           6         10        14

2

1

Cd

‖V‖,m /s

2           6         10        14

2

1

*
*

*

Diagnostic computed over the North Pacific 
ocean from one month of daily data
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4/ Toward inclusion of gustiness in the surface drag computation4/ Toward inclusion of gustiness in the surface drag computation
Very very very …  preliminary results :    Impact on forced-by-SST simulations
                                                                  1-year & zonal averages over oceans

Zonal wind stress (N/m2) 
Not much except in the northern
mid latitudes

Near surface zonal wind (m/s)
same

Latent heat flux LE (W/m²)
Non neglectalbe
Change of 4 W/m² of the global 
energetic balance at TOA → retuning

Ts-T2m (K) :
 strong. Divided by 2 in tropics...

Old with fudge factors
Charnock
With gusts

→ → very very preliminary results → I should rather have sleptvery very preliminary results → I should rather have slept
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Concluding remarks

SST biases and evaporation
• SST biases strongly correlated to evaporation biases in forced-by-SST simulations
• Eastern Tropical Oceanic warm biases : RH related. Systematic.
• As strong as cloud effect (not excluding a contribution from direct drag effect on SSTs)
• Wind induced latent heat biases as strong but more variable and zonal

Parametrization of non local transport by boundary layer convection 
• Dries the surface. Important for evaporation.
• Important for a good representation of the diurnal cycle of wind over continents and dust lifting
• Involved in the stress / U10m issue discussed in this workshop ?

Work on air-sea drag
• Must include improvement of boundary layer processes
• Get drags and wind stress right for good reasons, i e with good representation of boundary 
layer processes and near surface variables (RH, wind, Ts-T2m, correlations)
• For wind stress : impact often hidden by compensation to satisfy the momentum budget
• Strong impact on evaporation requires retuning the model energetics

Link with observations / methodology issues
• Lacking reliable climatology : 2m RH and T, near surface wind, fluxes, vertical profiles ...
• Are we sure that scatterometer winds are OK in terms of mean wind speed ? Are they used 
correctly ? Are they scale issues ? Link with gustiness ? U or Ueff ?
• Nudging can be useful for sensitivity studies to model parametrization and model inter-
comparisons (Annelize van Niekerk), and direct use of in-situ observations
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