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Important for drag parametrization schemes in global climate and weather
prediction models

It is known that drag decreases as flow becomes more nonhydrostatic
(narrower obstacles) — this would suggest that trapped lee waves (highly
nonhyrsotatic) would produce little drag

However, trapped lee waves exist due to energy trapping in a layer or
interface: wave reflections and resonance — may lead to drag amplification

How is drag partitioned into trapped lee waves and vertically
propagating (untrapped) mountain waves?

Bell-shaped 2D and 3D Linear, hydrostatic, non-rotating,
circular mountains constant / limit
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W(X, Vs Z) = I Iw(klnkzaZ)ei(k1x+k2y)dkldk2

Linearization, Boussinesq approximation
Inviscid, nonrotating, stationary, uniform flow

‘W ik k! +k;
Taylor-Goldstein equation
72 k1 ay in equati

Boundary conditions: [ CE) a1/

continuous at z=H WENES progagate energy upward or
ecay as z—»®

2 (P —k)W=0

2-layer atmospheres Scorer (1949) Vosper (2004)
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Case 1
Propagating wave drag (2D)
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D, = dmp U J% ki<l
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Trapped lee wave drag (2D)
my (k) (k)
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Resonance condition (2D)

Drag normalized by ol D, =% pU’lLah;
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determined from
solutions for §%

Depends on
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Propagating wave drag (2D)
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Trapped lee wave drag (2D)

Resonance condition (2D) [ AR 2l

Fr? —n,(k,)H

Drag normalized by or o} =% pULah;

Depends on
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Numerical simulations [ZSRAY

- D,/D, may be large (~3)

* Drag maxima coincide with
establishment of trapped lee wave
modes

» Agreement with numerical simulations
requires considering both D, and D,

* D,/D, increases as /,a decreases
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® Numerical
— Total drag (theory) ® Numerical

= |nternal (theory) — Total drag (theory)
— | ee wave (theory) . — nternal (theory)
- | ee wave (theory)

® Numerical o DZ/DO may be Iarge (~2) —> some

- Total drag (theory) i : : ;
) directional wave dispersion
» Drag maxima lower and wider than in

2D: — continuous spectrum, even for
trapped lee waves

« Agreement with numerical simulations
requires considering both D, and D,

 D,/D, substantially higher than in 2D —
non-hydrostatic effects more important
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NN, /[ =0.2

|H/7z=0.5D,/D, =0.08

Propagating waves
dominate
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xla

IH/7z=0.788D,/D, =0.06

Trapped lee waves
dominate
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Numerical simulations 2%l

- D,/D, may be large (~3)
* Single drag maximum exists at Fr~1

« Agreement with numerical simulations
requires considering both D, and D,

* D,/D, increases as /,a decreases
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—— |nternal (theory)

— Lee wave (theory)

— Total drag (theory)
® Numerical

—— Internal (theory)

— Lee wave (theory)

- Total drag (theory)
® Numerical
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—— Internal (theory)
—— | ee wave (theory)
— Total drag (theory)

® Numerical

* D,/D, may be large (~1.5) - some
directional wave dispersion

* Drag maximum lower and wider than in 2D
— continuous spectrum of trapped lee waves

« Agreement with numerical simulations
requires considering both D, and D,

» D,/D, substantially larger than in 2D and
occur for lower L,a — more non-hydrosatatic
flow.
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> trapped lee wave field 2

w/(Uhy/a) at z=H

& Fr - 0.55

“Ship wave” pattern
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h D D
2D obstacle =—— Cp =y = =2,
1+(x/a) (1/2)100 Alength DO 2
3D obstacle | T b D=z,

i+ Gy +G/a ] I T (1/2)p U4 D, 4

Since for realistic atmospheric and orographic parameters, //4,=0.1~0.5,
multiplying factor relating D/D, and ¢, is typically 0.1~0.8

¢, may easily be of O(1), especially for 2D mountains.

This is comparable to turbulent form drag on obstacles in non-
stratified flow.
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More details

Teixeira, Argain and Miranda (2013a), QJRMS, 139, 964-981
Teixeira, Argain and Miranda (2013b), JAS, 70, 2930-2947
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Summary

« 2D waves trapped in a layer may have multiple modes, waves trapped
at temperature inversion may only have single mode

* Due to resonant amplification, trapped lee wave drag may be
comparable to drag associated with waves propagating in stable upper
layer, higher than uniform-flow hydrostatic reference value

« D,/D, increases as l,a decreases and as mountain becomes more 3D
— non-hydrostatic effects. Trapped lee wave drag maximized for
l,a = 0O(1): wavelength of trapped lee waves matches mountain width

« 3D trapped lee waves produce less drag, and drag maxima are lower
and wider: continuous wave spectrum — “ship wave” pattern.

« Trapped lee waves give substantial contribution to low-level drag, may

be counted mistakenly as blocking drag or turbulent form drag
(different dependence)
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