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Trapped lee waves 
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Mountain wave drag 

It is known that drag decreases as flow becomes more nonhydrostatic 
(narrower obstacles) → this would suggest that trapped lee waves (highly 
nonhyrsotatic) would produce little drag 

However, trapped lee waves exist due to energy trapping in a layer or 
interface: wave reflections and resonance → may lead to drag amplification 

How is drag partitioned into trapped lee waves and vertically 
propagating (untrapped) mountain waves?  

Important for drag parametrization schemes in global climate and weather 
prediction models 
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Linear theory 
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Taylor-Goldstein equation  

Waves propagate energy upward or 
decay as z→∞ 
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continuous at z=H 
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Propagating wave drag (2D) 

Trapped lee wave drag (2D) 
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Resonance condition (2D) 
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Propagating wave drag (2D) 
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Case 1 (2D): Drag 
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• D2/D0 may be large (~3) 
• Drag maxima coincide with 
establishment of trapped lee wave 
modes 

• Agreement with numerical simulations 
requires considering both  D1 and D2 

• D2/D1 increases as l2a decreases 
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Case 1 (3D): Drag Department of  
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• D2/D0 may be large (~2) →  some 
directional wave dispersion 
• Drag maxima lower and wider than in 
2D: → continuous spectrum, even for 
trapped lee waves 

• Agreement with numerical simulations 
requires considering both  D1 and D2 

• D2/D1 substantially higher than in 2D → 
non-hydrostatic effects more important 

Workshop on drag processes – 12-15 
S b  2016 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.6

1.2

1.8

2.4

3.0

3.6
 Numerical
 Total drag (theory)
 Internal (theory)
 Lee wave (theory)

 

 
D/

D 0

l1H/π

1 10l a =

2 2l a =

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
 Numerical
 Total drag (theory)
 Internal (theory)
 Lee wave (theory)

 

 

D/
D 0

l1H/π

1 5l a =

2 1l a =

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 Numerical
 Total drag (theory)
 Internal (theory)
 Lee wave (theory) 

 

 

D/
D 0

l1H/π

1 2l a =

4.02 =al



9 9 

Case 1 (2D): Flow field 
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Case 1 (3D): Resonant 
trapped lee wave field 

2.0/ 12 =ll 1 / 0.5l H π =

“Ship-wave” pattern 

w/(Uh0/a) at z=H/2 
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• D2/D0 may be large (~3) 

• Single drag maximum exists at Fr ≈ 1 

• Agreement with numerical simulations 
requires considering both  D1 and D2 

• D2/D1 increases as l2a decreases 
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• D2/D0 may be large (~1.5) → some 
directional wave dispersion 

• Drag maximum lower and wider than in 2D 
→ continuous spectrum of trapped lee waves 

• Agreement with numerical simulations 
requires considering both  D1 and D2 

• D2/D1 substantially larger than in 2D and 
occur for lower l2a → more non-hydrosatatic 
flow. 
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Case 2 (3D): Resonant 
trapped lee wave field 

“Ship wave” pattern 

w/(Uh0/a) at z=H 
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2D obstacle  

3D obstacle 

cD may easily be of O(1), especially for 2D mountains. 

This is comparable to turbulent form drag on obstacles in non-
stratified flow. 
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Since for realistic atmospheric and orographic parameters, lh0=0.1~0.5, 
multiplying factor relating D/D0 and cD is typically 0.1~0.8 
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Summary 

• 2D waves trapped in a layer may have multiple modes, waves trapped 
at temperature inversion may only have single mode 

• Due to resonant amplification, trapped lee wave drag may be 
comparable to drag associated with waves propagating in stable upper 
layer, higher than uniform-flow hydrostatic reference value 

• D2/D1 increases as l2a decreases and as mountain becomes more 3D 
– non-hydrostatic effects. Trapped lee wave drag maximized for        
l2a = O(1): wavelength of trapped lee waves matches mountain width 

• 3D trapped lee waves produce less drag, and drag maxima are lower 
and wider: continuous wave spectrum – “ship wave” pattern. 

• Trapped lee waves give substantial contribution to low-level drag, may 
be counted mistakenly as blocking drag or turbulent form drag 
(different dependence) 
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