New scoring methods for weather forecasts

Isabelle Sanchez, Fabien Stoop, Michaël Zamo, Francis Pouponneau, Nicole Girardot

- Motivations
- Calculation
- Application

2 - Modified CRPS calculation

- Context
- Calculation
- First results

Summary

- 1 Verification of sensible weather:
 - Motivations
 - Calculation
 - Application
- 2 Modified CRPS calculation
 - Context
 - Calculation
 - First results

Conclusion

Objectives:

- Score for final public production (illustration below)
- Synthetic score
- Values easy to understand
- Linked with user feeling
- Same score from short to medium range (up to day 7)

The goals define the choices:

- Score for final public production → parameters: sensible weather (sun, rain, storm, snow...), total cloud cover, temperature, wind speed
- Synthetic score → aggregation of scores for these parameters
- Easy to understand → value from 0 (bad forecast) to 1 (good forecast)
- Linked with user feeling → put more weight where the error is more sensible (see next slides)

Calculation for temperature:

(the score goes from 0 for bad forecast to 1 for good forecast)

value of the score according to the forecast value

forecast temperature

Calculation for windspeed:

The principle is the same as for temperature, except that the width of the tolerance interval enlarges when the windspeed becomes stronger.

windspeed

Calculation for weather type:

Problem: the forecast classes of weather change with the time range.

In order to have a score valid for all time ranges, 6 weather types are considered:

- Clear sky
- Cloudy sky
- Rain
- Snow
- Thunderstorm
- Fog / mist

For each type, the forecast is expressed as a probability: Pf the observation, Po, is 0 or 1.

The score for each type is : |1 - (Pf + Po)|

The final score for sensible weather is the worst of the 6 values.

Aggregation of temperature, windspeed and weather scores:

In order to get a synthetic value, the final score is computed as a weighted average of the three scores.

The weights are:

- 50% for weather type
- 30% for temperature
- 20% for windspeed

These weights aim to represent the importance of weather factors for the final users.

Application:

The scores are computed every day.

Different kind of plots exist:

Score and tendancy for last 10 days

Score and tendancy for last 3 months

Indices moyens des 10 derniers jours					Indices moyens des 3 derniers mois entiers				
Région	Indices CDPH Indices			CDPME	Dógian	Indices CDPH Indices CDPME			
	J1	J3	J5	J7	Région	J1	J3	J5	J7
France	0.80 🖊	0.74 🖊	0.70 🖊	0.68 ~	France	0.82 ~	0.76 ~	0.69 ~	0.63 🔪
Nord	0.81 ~	0.75 ~	0.71 🖊	0.72 ~	Nord	0.84 ~	0.78 ~	0.71 ~	0.64 💊
lle-de-France-Centre	0.77 🖊	0.72 🖊	0.72 🖊	0.69 🦫	lle-de-France-Centre	0.84 ~	0.79 ~	0.72 ~	0.65 🔪
Nord-Est	0.80 🖊	0.75 /	0.70 ~	0.70 😼	Nord-Est	0.81 🖊	0.75 🖊	0.69 ~	0.63 🔪
Centre-Est	0.79 🥖	0.73 🖊	0.70 ~	0.69 ~	Centre-Est	0.80 ~	0.74 ~	0.66 ~	0.61 ~
Sud-Est	0.79 🖊	0.74 🖊	0.67 ~	0.65 🖊	Sud-Est	0.79 🖊	0.74 ~	0.66 ~	0.62 ~
Sud-Ouest	0.81 🖊	0.76 🖊	0.71 🖊	0.66 😼	Sud-Ouest	0.82 ~	0.77 🥖	0.68 ~	0.62 ~
Ouest	0.80 /	0.75 /	0.74 🖊	0.72 ~	Ouest	0.84 ~	0.79 ~	0.72 ~	0.65 💊

Different areas of France

Application:

Verification of sensible weather 8/9

Chronology of the scores over 3 months

Summary:

> The score gives satisfaction according to the objectives.

> The visualisation gives a real time information about final forecast quality.

The temporal evolution of the score shows bad forecasts situations.

> Final validation is in progress.

- 1 Verification of sensible weather
 - Motivations
 - Calculation
 - Application
- 2 Modified CRPS calculation
 - Context
 - Calculation
 - First results

Conclusion

Context:

- TAC sub-group on extreme events verification
- Search for proper scores
- Have the possibility to give more attention to certain ranges of values
- References:
 - « Forecaster's Dilemna : Extreme Events and Forecast Evaluation », Lerch et al., 2015
 - « Comparing Density Forecasts Using Threshold and Quantile weighted Scoring Rules », Gneiting and Ranjan, 2008

Usual CRPS calculation:

$$CRPS(forecast) = \frac{1}{ncases} \sum_{i=1}^{ncases} \int_{x=-\infty}^{x=-\infty} \left(F_i^f(x) - F_i^o(x) \right)^2 dx$$

Modified CRPS calculation:

consider a given range of values \rightarrow apply a weight function w(x)

$$CRPS(forecast) = \frac{1}{ncases} \sum_{i=1}^{ncases} \int_{x=-\infty}^{x=-\infty} \left(F_i^f(x) - F_i^o(x)\right)^2 dx$$

Different weight functions are tested:

Data used :

- Parameters: 10m-windspeed, 6h-precipitations, 24h-precipitations
- PEARP ensemble system (based on ARPEGE), starting at 18h UTC.
- Time ranges from 0/6/24 to 108h
- Period : mai 2015 to april 2016
- · Area: France
- Verification against synoptic observations

First results:

Comparison uniform/left/right weight for windspeed – threshold 5 m/s

- → Daily cycle is more pronounced with weighted CRPS (clear difference for valid time 12h)
- → no tendancy with time range

First results:

Comparison uniform/left/right for 6h-precipitations – threshold 4 mm

- → Light deterioration with time range
- → Impact of threshold / frequency of the event

First results:

Comparison uniform/left/right for 24h-precipitations – threshold 10 mm

- → Light deterioration with time range
- → Impact of threshold / frequency of the event

First results:

Comparison indicator and normal CDF weights for windspeed – threshold 15 m/s

→ indicator and normal CDF weights are very similar

First results:

Evolution with threshold

→ This behavior is well known for the Brier score, and is named « degeneracy » of the score : this is linked with the frequency of the assessed event.

So what?

- > The weight method works, first results are encouraging and coherent with the Brier score behavior
- > It can be used to compare different ensembles for a given range of event
- > Problem of degeneracy will be further investigated :
 - Test the skill version of weighted CRPS
 - Use weight functions based on the quantiles, not the absolute forecast values

- → two current ways of investigation have been presented
- → first one tries to consider final user perception of the forecast error. It is nearly in operations.
- → second one aims to focus on extreme events. First results are encouraging.

Thank you for your attention !

