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Preface 

The current Note stems from material presented in a 1-2 hours Training course lecture on “Introduction to 

moist processes” that originally has been developed by Adrian Tompkins. The aim is to give a short 

introduction into the principles of atmospheric thermodynamics, and to present a “handy” overview and 

derivation of the quantities used in numerical weather prediction 

The material presented is kept to a minimum, and focuses on the concept of enthalpy of moist air. This 

should allow the reader to elaborate on more involved thermodynamical problems.  

Several textbooks dedicated to atmospheric thermodynamics exist. One might notice that some authors 

mainly use the notion of “adiabatic” atmospheric processes whereas others use the notion of isentropic 

processes throughout their derivations. Here we will use both notions. 

Among the textbooks I would particularly recommend 

 Dufour L. et J. v. Mieghem, 1975: Thermodynamique de l’Atmosphère, Institut Royal 

météorologique de Belgique 

 Maarten Ambaum, 2010: Thermal Physics of the Atmosphere, John Wiley Publishers 

 Sam Miller, 2015: Applied thermodynamics for Meteorologists, Cambridge Univ. Press 

 Rogers and Yau, 1989: A short course in cloud physics, International series in natural philosophy 

 Houze R., 1993: Cloud dynamics, Academic Press 

 Emanuel K. A., 1994: Atmospheric convection, Oxford University Press 

The book by Dufour and v. Mieghem is probably the most comprehensive and accurate textbook in 

atmospheric thermodynamics. Unfortunately it seems not available anymore. 
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1 Ideal gas law 

In an ideal gas the individual molecules are considered as non-interacting. The ideal gas law stems from the 

law of Boyle and Mariotte saying that at constant temperature T 

 pV cste  (1) 

and the law of Gay-Lussac that describes the relation between temperature T, and pressure p for a gas with 

given mass m and volume V 

 
p

cste
T
  (2) 

The ideal gas law can then be written as either 

 
1;

p V m R T

p R T   



 
 (3) 

where R is the gas constant, ρ is density, and α the specific volume of the gas. A gas under e.g. very high 

pressure might not entirely follow the ideal gas law. It is then called a van der Waals gas, and for these 

gases an additional correction term is added to the rhs of (3). 

1.1 Gas law for dry air and water vapour 

Using subscripts d and v for dry air and water vapor, respectively, it follows from (3) that 

 
d d d

v v v

p R T

p R T








 (4) 

where pv is the water vapor pressure (Note that the water vapor pressure is also often denoted as e in the 

literature). The gas constants are given as Rd=287.06 J kg-1 K-1, and Rv=461.52 J kg-1 K-1, and one defines 

 0.622d

v

R

R
    (5) 

1.2 Gas law for mixture of dry air and water vapor 

Dalton’s law says that when different gases are put in the same volume, then the pressure of the mixture of 

gases is equal to the sum of the partial pressures of the constituents. Therefore one obtains for moist air 

 ; ;d v d d v vp p p p p N p p N     (6) 

where p is the actual atmospheric pressure, and Nd and Nv are the Mole fractions of dry air and water 

vapor, respectively. It follows the important relation 

 d v

d v

dp dpdp

p p p
   (7) 

which means that the change in water vapour pressure is proportional to the change in atmospheric 

pressure (e.g. when climbing to higher altitudes both the atmospheric pressure and water vapour pressure 

decrease). Then from (3) , (4)and (5) the gas equation for moist air is obtained as 

 ( )d d v vpV m R m R T   (8) 
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2 First law of thermodynamics 

The first law, or the principle of energy conservation, says that it exists a state function, the internal energy 

that increases according to the heat supplied and diminishes according to the work done by the system. 

Denoting the specific internal energy (J kg-1) as e=E/m (this is the traditional notation and e should not be 

confused with the water vapour pressure), the first law writes 

 ;de dQ dw dQ pd dQ Tds      (9) 

where dQ denotes the heat supply, s the entropy, and dw the change due to the work done. Meteorologists 

often use the notion of heat, but formally it is better to work with entropy instead, as dQ is not a perfect 

differential, but ds is. The internal energy equation in its differential form can also be expressed as 

 5
;

2

v

v vd d

de c dT dQ pd Tds pd

e Q
c c R

T T 

 





    


  


 (10) 

where cv is the specific heat, or better heat capacity, at constant volume. The value cvd =5/2 Rd = 717.6 J 

kg-1 K-1 for dry air is obtained for a diatomic gas as is the atmosphere. 

Next possible inequality between dQ and Tds in (9) is explained through the second law of 

thermodynamics. 

3 Second law of thermodynamics 

The second law of thermodynamics goes back to the work of Carnot, Clausius and Kelvin. It states that the 

entropy of the system can not diminish; it can only either remain constant or increase. For a reversible 

transformation one can write 

 0Tds dQ   (11) 

where dQ/T is the exact differential of the state function s. It follows that for an adiabatic transformation 

(dQ=0), the entropy is an invariant of the system. For an irreversible transformation  

 Tds - dQ’= 0 (12) 

where the Clausius non-compensated heat dQ’ has been introduced. It follows that for an irreversible 

adiabatic (dQ=0) transformation the entropy produced by the system is /ds dQ T . 
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4 Enthalpy  

The beauty of the first law of thermodynamics is that all other relevant state functions can be easily derived 

through so called Legendre transformations. Writing 

 ( )de Tds pd Tds d p dp        (13) 

It follows that 

 ( )d e p dh Tds dp      (14) 

where a new state function, the enthalpy, has been derived that has dependent variables entropy and 

pressure. This can also be written as 

 ; ;p p v pd vd

h
dh c dT Tds dp c c R c c R

T



       


 (15) 

with cpd=7/2 Rd=1004.7 J kg-1 K-1 the heat capacity for dry air at constant pressure, as obtained from (14) 

and (3). The enthalpy is the preferred state function in meteorology as it uses pressure as dependent 

variable, and simplifies for isentropic transformations. Furthermore, the enthalpy is also the relevant 

function in flow processes as can be seen from the equations of motion 

 

1

; 0

dU
p p

dt

dU
h T s h ds

dt




     

      

 (16) 

Therefore, in isentropic flow (see Section 8.1) the acceleration of the flow is given by the gradient of the 

enthalpy. 

5 State functions and Maxwell relations 

As for the enthalpy, one can further apply Legendre transformations to change the dependent variables to 

derive the Helmholtz free energy f and the Gibbs function gf. The Gibbs function, having dependent 

variables temperature and pressure, is particularly convenient to describe phase transitions. As a summary 

all four energy functions are listed in (17). Also, for each function a corresponding Maxwell relation is 

obtained stemming from the fact that the order of differentiation is irrelevant, e.g. 

( / ) / ( / ) /e s e s           

 

s ps

f

T pT

de Tds pd dh Tds dp

T p T

s p s

df sdT pd dg sdT dp

s p s

T p T





 





 





   

         
        

         

     

         
        

         

 (17) 
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6 Humidity variables 

For any intensive quantity χ (i.e. a scale invariant quantity that does not depend on the amount of 

substance, in contrast to an extensive quantity like mass or volume) one can write the mixture of a dry air 

mass and a mass of water vapour as 

  d v v v d dm m m m      (18) 

in order to obtain 

 v d
v d

d v d v

m m

m m m m
   

 
 (19) 

The specific humidity is defined as the ratio of the mass of water vapour and moist air so that we can 

rewrite (19) to obtain 

 (1 )v v v dq q      (20) 

Note that this is also valid for temperature. However, when the air mass becomes “saturated” the mixed 

value has to be adjusted to take into account latent heat effects (see Sections 10, 11, 13). 

The mixing ratio is defined as the ratio of water vapour and dry air. Therefore, if we divide (18) by md 

instead of md+mv, one obtains the “mixed value” of the intensive quantity in terms of the mixing ratio rv  

  
1

1
v v d

v

r
r

   


 (21) 

Comparing (20) and (21) one easily obtains the conversion rules from q to r and vice versa 

 ;
1 1

v v
v

v v

r q
q r

r q
 

 
 (22) 

There are different ways to describe the water content in the atmosphere. A list of the most common 

definitions is given in   

Table 1.  

Table 1. List of common humidity variables and their usual notations. ε=0.622 is defined in (5). 

 Unit Definition 

Vapour pressure Pa e=pv 

Absolute humidity kg m-3 
v

v

m

V
   

Specific humidity kg kg-1 

(1 )

v v v
v

d v d v

m e e
q q

m m p e p

 
 

   
     

   
 

Mixing ratio kg kg-1 
v v

v

d d

m e e
r r

m p e p


 


    


 

Relative humidity  
=   v v

s vs vs

p qe
RH

e p q
   

Specific liquid water content kg kg-1 
l

lq



  
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Total water content kg kg-1 
w t v lq q q q    

7 Virtual temperature 

Another way to describe the vapour content is the virtual temperature which is an artificial temperature. It 

describes the temperature dry air needs to have in order to have at the same pressure the same density as 

a sample of moist air. Definition 

 

d v

p p

R T RT
    (23) 

The probably easiest derivation of the virtual temperature is obtained by recalling that R of the mixture is 

given by (20), i.e. 

 1(1 ) (1 )v v v d d vR q R q R R q 


      (24) 

Putting (24) into (23) and rearranging, one obtains 

 
 1 (1 )

1 1 (1 0.608 )
(1 )

v
v v v

v

r
T T q T T q

r

 

 

   
        

  
 (25) 

Therefore, moisture decreases the air density and increases the virtual temperature, e.g. an air parcel at 

T=300 K at qv=5 g kg-1 is virtually about 1 K warmer than a reference dry air parcel. 

8 Reversible adiabatic transformation without phase change 

8.1 Potential temperature of dry air 

The process we describe now is often called “dry” adiabatic transformation, but indeed is an isentropic 

transformation (dQ = ds = 0) without phase change. Considering only dry air, one obtains from the enthalpy 

equation (15) 

 d
pd

R T
c dT dp dp

p
   (26) 

or 

 ln lnpd dc d T R d p  (27) 

which can be integrated from state T1 = T, p1 = p to a state T0 = θ, p0 = 1000 hPa to obtain 

 0 2
;

7

d

pd

p R
T

p c



 
 

   
 

 (28) 

Where θ, a quantity that usually increases with height,  is referred to as the potential temperature and is 

also plotted as such in thermodynamic diagrams (see below). Finally, differentiating (28) and taking into 

account (15), one obtains the important relation between entropy and the  potential temperature 

 lnpdds c d   (29) 

which states that ds = 0 in isentropic flow (dθ = 0). 
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8.2 Poisson relation and speed of sound 

With the aid of (28) , using T0 = θ  and (3) one can also verify that 

 
0 0

pd vdC C

p

p





   
   

   
 (30) 

which is the Poisson relation that allows to compute the speed of sound c in dry air as 

 
2

d

pd

vd

cp
c R T

c


 


 (31) 

that for T = 300 K is c = 347.2 m s-1 or roughly 331 m s-1 for T = 273.16 K=0°C. 

8.3 Potential temperature of moist air 

Considering a system that does not change mass and heat with its environment, then 

 0dH Vdp   (32) 

where H is the enthalpy of dry air and water vapour. Taking into account (8) and  (26) this can be written as 

 ( ) ( )d pd v pv d d v v

dp
m c m c dT m R m R T

p
    (33) 

Where cpv = 1846.1 J kg -1 K-1 is the heat capacity of water vapour. Dividing by md or md+mv gives 

 

( ) ( )

[ (1 ) ] [ (1 ) ]

pd v pv d v v

v pd v pv v d v v

dp
c r c dT R r R T

p

dp
q c q c dT q R q R T

p

  

    

 (34) 

from which it follows that 

 0 ; d v v
m

pd v pv p

p R r R R
T

p c r c c



 
  

   
 

 (35) 

Note that we have chosen the subscript m as the subscript v is normally reserved for the virtual potential 

temperature where the density effect of vapor is generally only considered through the virtual temperature 

effect but not through the effect on κ 

 
0

v v

p
T

p




 

  
 

 (36) 
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8.4 Dry static energy 

Instead of the potential temperature of dry air one often uses the dry static energy Replacing dp in (26) by 

the hydrostatic approximation dp =-gρdz, with g = 9.81 m s-2, the gravity acceleration, one obtains 

 0pd zc dT gdz ds    (37) 

It follows that in an atmosphere in hydrostatic equilibrium the dry static energy sz = cpT + gz (often it is 

denoted by s, but this notation has been reserved for the entropy) is conserved during adiabatic ascent 

without phase change. Furthermore, in contrast to θ it is linear in T and z, and therefore a preferred 

quantity for numerical weather prediction, in particular convection parametrization. 

Finally, with the aid of (37) we can also derive the dry adiabatic lapse rate of the atmosphere 

 
pd

dT g

dz c
   (38) 

which amounts to a temperature decrease of 0.98 K per 100 m. 

9 Reversible adiabatic transformation with phase change 

9.1 Specific heat of phase change 

Before presenting the differential enthalpy equation including phase changes, we have to introduce the 

latent heats. These correspond to the heat, or additional enthalpy required, to pass from state l, e.g. liquid 

water having enthalpy hl to a state v, e.g water vapour having enthalpy hv 

 
00 00 00 00( ) ( ) ( ) ( )v v l v pv l lL h h h T c T T h T c T T         (39) 

Following this procedure one can readily derive the expressions for the latent heat of vaporization Lv, the 

latent heat of sublimation (ice to vapour) Ls, and the latent heat of melting Lm 

 

00 00

00 00

6 1 6 1

00 00 00

( ) ( )( )

( ) ( )( )

273.16 ; ( ) 2.5008 10 ; ( ) 2.8345 10

v v pv l

s s pv i

m s v

v s

L L T c c T T

L L T c c T T

L L L

T K L T J kg L T J kg 

   

   

 

    

 (40) 

where T00 is the triple point temperature where all three phases coexist, and where the heat capacities of 

liquid water and ice are given as cl = 4218 J kg-1 K-1, and ci =2106 J kg-1 K-1.  

9.2 Liquid phase  

Equivalent to (32) the differential enthalpy equation for a closed system containing dry air, water vapour 

and liquid water can be written as 

 0dH Vdp   (41) 

from which it follows using (33) and (39)  that 
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( ) ( ) ;

( ) ( )

d pd v pv l l d d v v v v

d pd v pv l l d d v v v l

dp
m c m c m c dT m R m R T L dm or

p

dp
m c m c m c dT m R m R T L dm

p

    

    

 (42) 

Note that for the condensation process dmv < 0 and dml > 0. Using (40), (42) can also be written as 

 ( ) ( ) ( );d pd w l d d v v v v w v l

dp
m c m c dT m R m R T d L m m m m

p
       (43) 

where mw is the  total water mass. Dividing by md one obtains 

 ( ) ( );p d v v v v p pd w l

dp
c dT R r R T d L r c c r c

p
      (44) 

where cp is the heat capacity of moist air containing liquid water.  

One can also divide (42) by md + mv to obtain  

 [(1 ) ] ( ); (1 )p v d v v v v p v pd w l

dp
c dT q R q R T d L q c q c q c

p
        (45) 

The notation drvs instead of drv, and dqvs instead of dqv, is actually more appropriate as the phase change 

from vapor to liquid only occurs when the mixing ratio exceeds the saturation value (see Section 10). 

9.3 Equivalent potential temperature and moist static energy 

The equivalent potential temperature is readily obtained by integration of (44). It is the temperature 

obtained by a parcel during a fictive adiabatic process where all the water vapour it contains has been 

condensed 

 0 exp( / ); ;d
e v v p p pd w l

p

p R
T L r c T c c r c

p c



 
 

    
 

 (46) 

Often cp is replaced here by its constant dry value as it is the case for a pseudo-adiabat (a non reversible 

process, see Section 11.3). However, even if for T in the exponential very often the actual environmental 

temperature is used, strictly one should use the temperature at the isentropic condensation level (see 

Section 11.3). For a discussion of various definitions of the equivalent potential temperature the reader is 

referred to Betts (1973). 

The moist static energy hz is derived from (44) using (24), repeating the procedure as for the dry static 

energy (Section 8.4) 

 
(1 ) ;

; (1 )

z p v v v pd v v p pd w l

z p v v pd v v p v pd w l

h c T r gz L r c T gz L r c c r c

h c T gz L q c T gz L q c q c q c

        

        
 (47) 

It is a conserved quantity in a reversible adiabatic process, and due to its linearity, a widely used quantity in 

convection computations. 
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9.4 Liquid and ice phase  

In analogy with the preceding Section one can extend (42) for the ice phase to obtain 

 

( ) ( ) ;

( ) ( ) ;

d pd v pv l l i i d d v v v v m i

d pd v pv l l i i d d v v v l s i

dp
m c m c m c m c dT m R m R T L dm L dm or

p

dp
m c m c m c m c dT m R m R T L dm L dm

p

      

      

 (48) 

where mi is the mass of ice. Then the conserved quantities ice-liquid potential temperature and a “liquid-

water static energy” can be derived. We only give here the expression for the “liquid-water static energy” 

as 

 (1 ) ;zil p v v l s i pd v l s i p pd w lh c T r gz L r L r c T gz L r L r c c r c            (49) 

For further accurate formulations of the equivalent potential temperature and enthalpy including the ice 

phase the reader is refered to Bolton (1980) and Pointin (1984). 

10 Clausius Clapeyron equation 

Consider a closed system where the liquid and gas phase of a substance, e.g. water, are in equilibrium, i.e. 

as many molecules leave the fluid to go into the vapour as vice versa. Then for this state the specific Gibbs 

functions gv and gl must be equal. From (17) it then follows that 

 v v l

v l

dp s s

dT  





 (50) 

Furthermore, using 

 v l v
v l

h h L
s s

T T


    (51) 

one obtains the Clausius-Clapeyron equation 

 
2( )

v v v v

v l v

dp L L p

dT T R T 
 


 (52) 

where the specific volume of water has been neglected. It is important that there is no mention of air, only 

water substance in the derivation. Therefore, the commonly perceived fact that “air holds water” is wrong, 

the air does not hold water!  

The problem in integrating the Clausius-Clapeyron equation lies in the temperature dependence of Lv. 

Assuming a constant value (52) can be readily integrated to obtain 

 
0 00

1 1
ln vs v

vs v

p L

p R T T

   
    

   
 (53) 

where the integration constant pvs0  is evaluated for the triple point temperature T00 = 273.16 K as pvs0 = 

6.112 hPa. Empirical accurate integration formula of (52) for the water vapor saturation pressure over 

liquid water and ice have been computed by Thetens 
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00

00

0

0

17.502 ( )/( 32.19);

22.587( )/( 0.7)

exp

exp ;

vs vs

vsi vs

T T T

T T T

p p

p p

 

 





liquid water

ice              (54) 

In atmospheric models one typical interpolates between the saturation pressure over water and ice for 

temperatures below T00 to account for the fact that all 3 phases can be present. The water vapour 

saturation curve as a function of temperature is plotted in Figure 1. Two interesting final remarks can be 

made 

 Due to the non-linearity of the saturation curve, a mixture of two unsaturated parcels can be 

oversaturated, as illustrated in Figure 1. 

 The boiling temperature of water is the temperature where the pressure of the gas bubbles equals 

the atmospheric pressure. Therefore, from inversion of (54) we get for an atmospheric pressure of 

1013 hPa a boiling temperature of 99.5 °C – everybody knows it should be something like 100 °C, 

but not why! 

 
Figure 1. Water vapor saturation pressure as a function of temperature (°C). Also plotted are two 
unsaturated parcels (stars). As their mixture is laying on a straight line, it is shown that due to the non-
linearity of the saturation curve a mixture of two unsaturated parcels can be oversaturated. 

11 Ways of reaching saturation 

An air parcel can reach saturation through 

 Diabatic (external) cooling, e.g. by radiation 

 Addition of moisture through evaporation of falling precipitation, turbulent mixing, differential 

advection, or surface moisture fluxes 

 Cooling during isentropic ascent 

The processes under the first two items are supposed to be isobaric processes (no change in pressure), 

whereas isentropic lifting implies the air parcel undergoes a change in height (pressure). 
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11.1 Dew point temperature 

The dew point temperature is the temperature to which a parcel must be cooled (e.g. by radiation) in order 

to be saturated, i.e. its specific humidity or mixing ratio must equal the saturation specific humidity (mixing 

ratio) 

 ( )v vs dq q T  (55) 

One can solve this equation for Td by inverting the saturation formula (54). 

11.2 Wet bulb temperature 

The wet bulb temperature Tw is the temperature to which air may be cooled at constant pressure by 

evaporation of water into it until saturation is reached. It can be solved for graphically (see Section 12.2) or 

numerically be solving e.g. the simplified moist enthalpy equation 

 
( ( ) )p v vs v vs vc dT L dq L q T q    

 (56) 

This equation is non-linear and therefore either requires an iterative procedure or a linearized formulation 

(for the latter see Section 13). 

11.3 Isentropic (or adiabatic) condensation temperature 

As (unsaturated) moist air expands (e.g. through vertical motion), it cools adiabatically conserving θ. 

Eventually saturation pressure is reached. The temperature and pressure at that level T = Tc,p= pc are known 

as the “isentropic condensation temperature” and “pressure”, respectively. The level is also known as the 

“Lifting Condensation Level”. If expansion continues, condensation will occur (assuming that liquid water 

condenses efficiently and no super saturation can persist), thus the temperature will decrease at a slower 

rate, the moist adiabatic lapse rate. The isentropic condensation temperature can be easily determined 

graphically (see Section 12.1) or numerically, by searching, starting from the surface (pressure p, 

temperature T), for the layer where first qv(p) >=  qvs(pc). Tc is then obtained as 

 
0

( , ) c
c

p
T T p

p




 

  
 

 (57) 

Formula also exist for an accurate direct numerical computation (e.g. Davies-Jones, 1983) of (Tc,pc) for given 

departure properties (T,p) 

11.4 Pseudo-adiabatic processes 

When lifting a parcel one has to make  a decision concerning the condensed water.  Does it falls out 

instantly or does it remain in the parcel? If it remains, it will have an important effect on parcel buoyancy 

(see Lecture Note on convection), and also the heat capacity of liquid water needs to be accounted for. 

Furthermore, once the freezing point is reached, ice processes would need to be taken into account. These 

are issues concerning microphysics, and dynamics. The air parcel history will depend on the situation. 

Therefore, often one takes a simple approach known as the “pseudo adiabatic process”, a non-reversible 

process, where one assumes that all condensate formed immediately leaves the parcel. The pseudo-

adiabatic, approximation can be qualified as a “good” approximation, it is in any case a much better 

approximation than assuming a reversible adiabat, i.e all condensates remains in the parcel. Furthermore, a 
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thermodynamic diagram, a 2D diagram (see below) cannot hold a third dimension (condensate), and 

therefore always pseudoadiabats are plotted. 

12 Energy diagrams – Tephigram 

The Tephigram is a meteorological energy diagram with an orthogonal coordinate system consisting of 

temperature T (°C) and potential temperature θ (°C) (dry adiabat). It is illustrated in Figure 2. Knowing T and 

θ one can compute pressure p. The isobars appear as quasi-horizontal lines in Figure 2. Furthermore, 

knowing T and p one can compute the saturation specific humidity qvs or mixing ratio rvs, and the moist 

adiabats or more precisely pseudoadiabats.  

 

 
Figure 2. Tephigram with highlighted isotherm (blue), isentrope (iso-theta) (dashed-black),  isobar (red), 
and saturation specific humidity (dotted black). 

Another property of the Tephigram becomes apparent when writing the enthalpy equation (15) as 

 lnd
pd pd

pd

RdT dp
dQ c T c Td

T c p


 
    

 
    (58) 

from which it follows that in this particular coordinate system areas T dlnθ are areas of equal energy (heat 

content). 

12.1 Determine isentropic condensation temperature 

During dry adiabatic ascent, both θ and the specific humidity of the parcel are conserved. Therefore, the 

isentropic condensation temperature Tc is graphically obtained in Figure 3 as the intersection of the dry 

adiabat through the departure point (T,p) with the saturation specific humidity line through p having the 

value qsv=qv(p) or in other words having the coordinates (Td,p). Then at the level pc, the lifting condensation 


T

pressure

Pseudoadiabat


T

pressure

Pseudoadiabat


TT

pressurepressure

PseudoadiabatPseudoadiabat
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level, the parcel is actually saturated, so that its humidity qv(p) is equal to the saturation value, and its 

temperature Tc and dewpoint temperature become equivalent. 

 

Figure 3. Graphical determination of the isobaric condensation temperature Tc: It is obtained as the 
intersection of the dry adiabat through the departure point (T,p) with the saturation specific humidity line 
(dotted red) through the point (qv,p) which is equivalent to the dewpoint  (Td,p). Note that a sounding is 
either given as (T(p),Td(p)) or (T(p),qv(p)). 

12.2 Wet-bulb temperature 

The wet-bulb temperature Tsw is the temperature of an air parcel brought to saturation by e.g. evaporation 

of rain. It therefore plays an important role in the computation of convective downdraughts driven by 

cooling through evaporating precipitation. The graphical procedure to determine Tsw is illustrated in Figure 

4. One determines first, as in Figure 3, the lifting condensation level, and then follows the moist adiabat 

through the lifting condensation level down to the departure level p.The wet-bulb potential temperature θw 

is obtained by further extending the moist-adiabat to the 1000 hPa pressure  level. 

 

Figure 4. Determination of the wet-bulb temperature Tsw. As in Figure 3, one determines first the lifting 
condensation level (Tc,p), but then extends the moist adiabat through the lifting condensation level  down 
to the departure level p, where the temperature Tsw can be read from the diagram. 
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12.3 Equivalent potential temperature 

The equivalent potential temperature is conserved during moist adiabatic ascent, and also in the presence 

of precipitation. This makes it an attractive variable for moist convective modelling, including saturated 

updraughts and downdraughts. Its graphical determination is illustrated in Figure 5 and can be summarised 

as follows. One follows the moist adiabat through the lifting condensation level upward until all water 

vapour has been removed (condensed), i.e. the slope of the moist adiabat becomes equal to that of a dry 

adiabat. Then one descends along the dry adiabat down to the departure level to obtain Te or further to the 

1000 hPa level to obtain the equivalent potential temperature θe. 

 

Figure 5. Graphical determination of the equivalent temperature Te and equivalent potential temperature 
θe. One follows the moist adiabat through the lifting condensation level upward until all water vapour has 
been condensed, and then descends along a dry adiabat to the departure level or the 1000 hPa level, 
respectively. 

13 Saturation adjustment – numerical procedure 

Last not least we still need an efficient numerical procedure to solve the saturation adjustment problem. 

The procedure uses a simplified form of the moist enthalpy equation (42) and (45) at constant pressure 

(dp = 0). The initial temperature T and specific humidity qv are known 

 Given , vT q  

check if ( )v vsq q T  then 

solve for adjusted  , vT q   

so that ( )v vsq q T   

 ( )v vsl
q q q T   

Using p v vsdT L dqc  
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The last relation can be linearised with the aid of a first order Taylor expansion around the initial 

temperature T  to yield 

 

 * *

*

( ) ( ) ( ) (2)

( )

1

vs

p v v vs

T

v v vs

v vsp

Tp

dq
c T T L q q T T T O

dT

L q q T
T T

L dqc

c dT

     


 



 
  

 (59) 

(59) can be solved using (52) and the definition of qvs in   

Table 1. Once T* is known one can compute qv* and ql. This computation is very accurate. However, for 

accuracy of order (10-2 K) it can be done twice. Note that in (59) we have used a general cp, so that moist 

effects could possibly be included. The formula can also be extended for the ice phase by using “mixed” or 

interpolated values for Lv and qsv, e.g. as a function of temperature. 

Finally, note that the denominator in (59) has value between 1 and 2, so that the actual temperature 

increment T*-T has value *0 ( ( ))v

p

v vs

L

c
T T q q T     …… loosely speaking it is somewhere in the middle 

because of the latent heat release during condensation, changing in turn the saturation value. This fact is 

graphically illustrated in Figure 6.  

 

Figure 6. Illustration of the adjustment procedure from an initial oversaturated state (T,qv) to an adjusted 
state (T*,qvs(T*)). The result T* is obtained through a linearization of the saturation curve at T. 

Acknowledgments 

My special gratitude goes to my colleague Martin Steinheimer for careful revisions to the manuscript, and 

to Adrian Tompkins who originally gave the “Moist introduction” lecture at ECMWF. I also want to thank 

my colleagues Anton Beljaars, Richard Forbes, Elias Holm and Martin Köhler for many helpful discussions 

and Els Kooji-Connally for her expertise in type setting.  

  



 Atmospheric Thermodynamics 

 

16  Meteorological Training Course Lecture Series 

References 

Betts, A. and F. J. Dugan, 1973: Empirical formula for saturation pseudoadiabats and saturation equivalent 

temperature. J. Atmos. Sci., 12, 731-732. 

Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046-1053. 

Davies-Jones, R. P., 1983: An accurate theoretical approximation for adiabatic condensation temperature. 

Mon. Wea. Rev., 111, 1119-1121. 

Pointin, Y., 1984: Equivalent potential temperature and enthalpy as prognostic variables in cloud modelling. 

J. Atmos. Sci., 41, 651-660. 

  



Atmospheric Thermodynamics  

 

Meteorological Training Course Lecture Series 17 

List of Symbols 

c Speed of sound m s-1 

cp Heat capacity (specific heat) at constant pressure J kg-1 K-1 

cpd Heat capacity of dry air  

cpv Heat capacity of water vapour  

cl Heat capacity of liquid water  

ci Heat capacity of ice  

cp Heat capacity (specific heat) at constant volume J kg-1 K-1 

E Internal energy J  

e Internal energy, specific J kg-1 

f Helmholtz free energy, specific  

gf Gibbs function, specific  

h Enthalpy, specific  

hz Moist static energy, specific  

hzil Liquid water static energy, specific  

H Enthalpy J 

g Gravity constant m s-2 

Lm Latent heat of melting J kg-1 

Ls Latent heat of sublimation  

Lv Latent heat of vaporisation  

m Mass kg 

md Mass of dry air  

mi Mass of ice  

ml Mass of liquid water  

mv Mass of water vapor  

mw Total mass of water (vapour+liquid)  

Nd Mole fraction of dry air unitless 

Nv Mole fraction of water vapor  

p Pressure (total pressure of atmosphere) Pa 

pd Pressure of dry air  

pv,e Pressure of water vapour  

pvs Saturation water vapour pressure  

qv Specific humidity unitless 

qvs Saturation specific humidity  

ql Specific humidity of liquid water  

qw Total water specific humidity   

R Gas constant J kg-1 K-1 

Rd Gas constant for dry air  

Rv Gas constant for water vapour  

RH Relative humidity unitless 

ri Ice  mixing ratio unitless 

rv Water vapour mixing ratio  

rw Total water  mixing ratio  

s Entropy, specific J kg-1 K-1 

sz Dry static energy, specific J kg-1 
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T Temperature K 

Tc Adiabatic condensation temperature  

Td Dewpoint temperature  

Te Equivalent temperature  

Tw Wet bulb temperature  

Tv Virtual temperature  

V Volume m3 

z Height m 

α Specific volume m3 kg-1 

ε Rd/Rv unitless 

κ R/cp  

ρ Density kg m-3 

ρd Density of dry air  

ρv Density of water vapour  

ρl Density of liquid water  

θ Dry Potential temperature K 

θm Potential temperature of moist air  

θe Equivalent Potential temperature  

θv Virtual Potential temperature  

θw Wet bulb quivalent Potential temperature  

 

 


