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* The purpose of DA is to merge information coming from observations with a priori 

information coming from a forecast model to obtain an optimal 3D representation of 

the atmospheric state at a given time (= the “analysis”).

This 3D analysis then provides initial conditions to the numerical forecast model.

* The main ingredients of DA are:

• a set of observations available over a period of typically a few hours.

• a previous short-range forecast from the NWP model (“background” information).

• some statistical description of the errors of both observations and model background.

• a data assimilation method (e.g. variational DA: 3D-Var, 4D-Var; EnKF,…).

 This presentation will focus on the use of physical parameterizations in 4D-Var DA.

The purpose and ingredients of Data Assimilation
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4D-Var

Incremental 4D-Var aims at minimizing the following cost function:

Ri = observation error covariance matrix.
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In other words, physical parameterizations are used in 4D-Var DA:

* to describe the time evolution of the model state over the assimilation

window as accurately as possible.

* to convert the model state variables (typ. T, wind, humidity, Psurf)

into observed equivalents so that the differences obsmodel can be

computed (at the time of each observation).

Side remark:

One advantage of the incremental approach is that the minimization of

the cost function can be run at lower resolution than the trajectory

computations (at ECMWF: 80 km versus 16 km).



from Marécal and

Mahfouf (2002)

Betts-Miller (adjustment 

scheme)

Jacobians of convective surface rainfall rate w.r.t. input T and qv

Tiedtke (ECMWF’s oper 

mass-flux scheme)

The choice of physical parameterizations will affect the 4D-Var results.

Example: M: input = model state (T,qv)   output = surface convective rainfall rate.
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Testing the tangent-linear code

The correctness of the tangent-linear model must be assessed by 

checking that the first-order Taylor approximation is valid: 

Example of output from a successful tangent-linear test:
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∀δ𝐱, δ𝐲  𝐌δ𝐱,  δ𝐲 =  δ𝐱,  𝐌𝑇δ𝐲

Testing the adjoint code

The correctness of the adjoint model needs to be assessed by checking

that it satisfies the mathematical relationship: 

The adjoint test should be correct at the level of machine precision 

(typ. 13 to 15 digits for the entire model). 

Otherwise there must be a bug in the code!

Example of output from a successful adjoint test:

<M x, y> = 0.13765102625164E-01

<     x, MT y> = 0.13765102625168E-01

The difference is 11.351 times the zero of the machine

where M is the tangent-linear model and MT is the adjoint model.



Linearity assumption

• Variational assimilation is based on the strong assumption that the analysis 

is performed in a (quasi-)linear framework.

• However, physical processes are often nonlinear and their parameterizations

involve discontinuities or non-differentiable functions (e.g. switches or   

thresholds). The trickiest parameterizations are convection, large-scale cloud  

processes and vertical diffusion.

 “Regularization” needs to be applied: smoothing of functions, reduction of 

some perturbations.
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Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 44 **u-velocity
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Nonlinear finite difference: 

M(x+x) – M(x)
Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 45 **u-velocity
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Tangent-linear integration: Mx

~700 hPa zonal wind increments [m/s] from 12h model integration. 

An example of spurious TL noise caused by a threshold in the 

autoconversion formulation of the large-scale cloud scheme.
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from M. Janisková



Linearized physics package used in ECMWF’s operational 4D-Var (1)

Main simplifications/regularizations with respect to full nonlinear model are highlighted in red.

• Radiation: TL and AD of longwave and shortwave radiation available [Janisková et al. 2002]
- shortwave: based on Morcrette (1991), only 2 spectral intervals (instead of 6 in nonlinear 

version).

- longwave: based on Morcrette (1989), called every 2 hours only.

• Large-scale condensation scheme: [Tompkins and Janisková 2004]
- based on a uniform PDF to describe subgrid-scale fluctuations of total water.

- melting of snow included.

- precipitation evaporation included.

- reduction of cloud fraction perturbation and in autoconversion of cloud into rain.

• Convection scheme: [Lopez and Moreau 2005]
- mass-flux approach [Tiedtke 1989].
- deep convection (CAPE closure) and shallow convection (q-convergence) are treated.

- perturbations of all convective quantities are included.

- coupling with cloud scheme through detrainment of liquid water from updraught.

- some perturbations (buoyancy, initial updraught vertical velocity) are reduced.



• Orographic gravity wave drag: [Mahfouf 1999]
- subgrid-scale orographic effects [Lott and Miller 1997].
- only low-level blocking part is used.

• Vertical diffusion: [Janisková and Lopez 2013]
- mixing in the surface and planetary boundary layers.

- based on K-theory and Blackadar mixing length.

- exchange coefficients based on: Louis et al. [1982] in stable conditions,

Monin-Obukhov in unstable conditions.

- mixed-layer parametrization and PBL top entrainment.

- Perturbations of exchange coefficients are smoothed (esp. near the surface).

• Non-orographic gravity wave drag: [Oor et al. 2010]
- isotropic spectrum of non-orographic gravity waves [Scinocca 2003].
- Perturbations of output wind tendencies below 200 hPa reset to zero.

• Surface scheme:  [Janisková 2014, pers. comm.]
- evolution of soil, snow and sea-ice temperature.

- perturbation reduction in snow phase change formulation.

Linearized physics package used in ECMWF’s operational 4D-Var (2)



Impact of linearized physics on TL approximation (1)

Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Blue = TL error 
reduction = 

Temperature



Impact of linearized physics on TL approximation (2)

Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF +  RAD

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Blue = TL error 
reduction = 

Temperature



Impact of linearized physics on TL approximation (3)

Blue = TL error 
reduction = 

Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF +  RAD + non-orog GWD + moist physics

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature



Impact of ECMWF linearized physics on forecast scores

Comparison of two T511 L91 4D-Var 3-month experiments with & without 

full linearized physics: Relative change in forecast anomaly correlation.

> 0 = 

Janisková and Lopez (2013)



z  10 m

The linearity assumption becomes less valid with integration time and 

resolution, especially close to the surface and when physics is activated.

Influence of integration length and resolution on linearity assumption

Comparison of pairs of “opposite twin” experiments using ECMWF’s nonlinear model.

Time evolution of correlation between M(x+x)M(x) and M(xx)M(x). 

Inspired from Walser et al. (2004).



 P  100 hPa



• Linearized physical parameterizations have become essential components 

of variational data assimilation systems:

 Better representation of the evolution of the atmospheric state during the 

minimization of the cost function (via the adjoint model integration).

 Extraction of information from observations that are strongly affected by 

physical processes (e.g. by clouds or precipitation).

 However, there are some limitations to the LP approach:

1) Theoretical:

The domain of validity of the linear hypothesis shrinks with increasing  

resolution and integration length.

2) Technical:

Linearized models require sustained & time-consuming attention:

 Testing tangent-linear approximation and adjoint code.

 Regularizations / simplifications to eliminate any source of instability.

 Revisions to ensure good match with reference non-linear forecast model. 

Summary and prospects (1)



Summary and prospects (2)

• In practice, it all comes down to achieving the best compromise between:

Realism

Cost Linearity

• Alternative data assimilation methods exist that do not require the 

development of linearized code, but so far none of them has been able to 

outperform 4D-Var, especially in global models:

 Ensemble Kalman Filter (EnKF; still relies on the linearity assumption),

 Particle filters (difficult to implement for high-dimensional problems).

• So what is the future of LP?



From a small challenge…



… to a much bigger challenge…



Summary and prospects (3)

• Eventually, it might become impractical or even impossible to make LP work

efficiently at resolutions of a few kilometres, even if the linearity constraint

can be relaxed (e.g. by using shorter 4D-Var window or weak-constraint 4D-

Var).

?





Simple example of tangent-linear and adjoint codes.

• Simplified nonlinear code: Z = a / X2 + b Y log(W)

• Tangent-linear code: Z = (2 a / X3) X + b log(W) Y + (b Y / W) W

• Adjoint code: X* = 0

Y* = 0

W* = 0

X* = X*  (2 a / X3) Z*

Y* = Y* + b log(W) Z*

W = W* + (b Y / W) Z*

Z* = 0



Example of nonlinear, tangent-linear and adjoint operators

in the context of 4D-Var.
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Nonlinear operators are applied to full fields:



Tangent-linear operators are applied to perturbations:
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Adjoint operators are applied to the cost function gradient:
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Illustration of discontinuity effect on cost function shape:

Model background = {Tb, qb};  Observation = RRobs

Simple parametrization of rain rate:  

RR =    {q  qsat(T)}   if q > qsat(T), 

0   otherwise
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Tangent-linear approximation and associated error

• The tangent-linear approximation is assessed by comparing the difference

between two integrations of the full non-linear model:

M(xx) – M(x)

with an integration of the tangent-linear model from the same initial

perturbation (x = xana – xbg):

Mx

• The TL error is then defined as:

 = <| M(xx) – M(x) – Mx |>

where <…> denotes spatial averaging (e.g. zonally or globally).



Impact of linearized physics on TL approximation (4)

< 0 = 

Mean vertical profile of change in TL error for T, U, V and Q  

when full linearized physics is included in TL computations.

Relative to adiabatic TL run (50-km resol.; twenty runs, 12h integ.)

Inclusion of linearized physics leads to better TL approximation. 

surface

TOA



z  10 m

The effects of nonlinearities are of comparable magnitude with those of

resolution, except near the surface when physics is activated (the former   

effects then dominate).

Effects of model nonlinearities versus effects of resolution

Comparison of pairs of “opposite twin” experiments using ECMWF’s nonlinear model.

Time evolution of correlation between M(x+x)M(x) and M(xx)M(x). 

Inspired from Walser et al. (2004).



 P  100 hPa


