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1 Introduction

At the Deutscher Wetterdienst (DWD) the COSMO model is autyeused in two different settings: the
COSMO-EU with a grid mesh size of about 7 km covers most of t®fean continent and is driven by
the global model GME. Nested into COSMO-EU is the conveefiermitting model COSMO-DE with
a grid mesh size of about 2.8 km. Similar setups are also usatbbt of the COSMO partners (Greece,
Italy, Poland, Russia, Romania, Switzerland). DWD addaity uses COSMO-DE in an ensemble
system with 20 members. At the end of 2014, GME will be replaloe the newly developed global
model ICON (see the article by G. Zangl in these proceedlingsobably mid of 2015, COSMO-EU
will be replaced by the static grid-refinement possibiliff@ON, too.

The current COSMO model uses the so called 'Runge-Kuttaadhyoal core; a few aspects of that are
addressed in sections 2 and 3. In particular, se@ibighlights consequences from the staggering in a
vertically stretched grid.

One drawback of the current dynamical core is its non-caasien of all prognostic variables. There-
fore, during the years 2008-2012, the COSMO priority proj€onservative Dynamical Core (CDC)’
(Baldaufet al,, 20139 investigated two other possible candidates, namely tmamiycal core of the
EULAG model (e.gPrusaet al.(2008) and a fully implicit finite volume solverlameson1991). Addi-
tionally, in the framework of the German Research Foundatimgram 'Metstrom’, the Discontinuous
Galerkin (DG) method is investigated for meteorologicgblagations. This and the above mentioned
two dynamical cores of the CDC project are formulated on atagyered grid. Consequently, the last
section 4 investigates the properties of wave expansiameiidG formulation on unstaggered grids.

2 The new fast waves solver of the COSMO model - consequencesn
the vertically stretched grid

2.1 A new fast waves solver

The basic time integration scheme of the COSMO model is ciitélar to that of the WRF model
(Wicker and SkamarogR002 Baldauf 2010: it is a split-explicit scheme which uses a large time step
for the 'slow’ processes advection, Coriolis force and thggical tendencies and a small time step for
the 'fast waves’ (sound and gravity waves). This time-8plit procedure is embedded into a 3-stage
Runge-Kutta scheme, which stably integrates the 5th ordeecion until Courant numbers of 1.42
(Baldauf 2008). For the fast processes 2nd order centred differencebdmatial discretisation and a
horizontally forward-backward, vertically implicit (HE1) time integration is used.
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During the last about two years a new fast waves solver has teecloped Baldauf 2013 which
mainly improves the following items:

1. use of weighted averaging operationsdthrvertical discretisations (also the implicit ones),
2. formulation of the divergence operator in strong coresson form,

3. the option to use a fully 3-dimensional (i.e. isotropid)etgence damping (instead of applying it
only to the horizontal momentum equations),

4. the option to use thilahrer(1984) discretisation for the horizontal pressure gradient term

Apart from that also smaller improvements e.g. in the foatiah of boundary conditions or to fulfil
an additional slope-dependent stability condition fordhergence damping have been done. This new
fast waves solver is contained in the official COSMO versid2d4and is in operational use at DWD
since 16 Jan. 2013. It turned out, that it improves the olataherical stability; this has been shown
in several real test cases that crashed before. In partitidaability to treat slightly steeper slopes has
been improved.

2.2 \ertically stretched grids

In the following we will consider the first item in the abovstlithe improvement of the discretisation for
vertically stretched grids. Generally the vertical stingtg in the most operational applications is quite
large. At DWD the COSMO model uses a grid mesh sizAnf 20 m at the ground anfiza~ 1000 m

at the model top. This huge stretching needs of course $@atEation.

As an example we consider the discretisation of a first devev@y/dz in a stretched grid with grid
pointsz.. We consider only at most 3-point formulae because theagwhal solver in the split-explicit
scheme does not allow wider stencils (solvers using mogodis than three are possibly too inefficient
for HE-VI schemes). There are in principal two ways of diisieg this. The first approach uses
weightings in the original spacékéda and Durbin2004), e.g.
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which can be derived by using a quadratic function througttlinee points.
In the second approach the coordinaeare given by a coordinate transformatimn= f({x), {k = kA
and the derivative can be calculated via the chain rule by
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where the second factor on the right is calculated e.g. biregdifferences.

Both approaches are straightforward in an unstaggeredidAbgit it is less clear how to proceed in
a staggered C-grid (or Lorenz grid). In the COSMO model ib# levels 41 (where the vertical
velocitiesw are located) are defined by prescribed values which arelmkﬂily stretched according
to the orography elevation. Here, we can consider them andiy the above mentioned stretching
function. Themainlevelsz (position of all scalars and (horizontally staggered) efutandv velocity
components) are located exactly in the middle of two haklev

Ijk+1+zljkf—

Z = 5 3)
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(see figurel). Consequently, if one wants to interpolate from half lev®l main levels an arithmetic
average

— 1
Bijk =51t (4)

is used, whereas for interpolations from main levels to lealtls a weighted average
Gk =% 1kt Q=0 )k (5)

is used now, in which the weighggtake into account the grid distance. Derivatives are catedlalways
by centred differences, possibly after an appropriate kg of fields, if necessary.

One may ask, why such a weighting is necessary at all and whycannot simply use the above
mentioned second approach. The answer is, that in thisaptaggering, i.e. the asymmetry in the
definition of main and half levels, not every information tained in the metric coefficients (as would
be the case in an unstaggered grid). Due to this delicaterasityy we need a tool to decide which
discretisation is the best in stretched grids. As such aveolise a truncation error analysis. This is a
straightforward task for an equidistant grid, because anesanply led the grid mesh sizz — 0. How-
ever, for non-equidistant grids there exist infinitely maogsibilities to refine a grid. In the following,
two variants of grid refinements are analysed, that leadfterdnt orders of the truncation error.

Figure 1: Grid positions and stretching in COSMO.

Discretisation error analysis - variant A In the first variant, the grid stretching is described by the
above mentionedoordinate transformation,zy = z({, 1). The transformed coordinat generates

an equidistant grid, , 1 = (k+ -A. With increasing grid refineme#t{ — 0 all the grid mes

idi 'cfk+2 k+1/2)-Al. With i ' id refi mt{ — O all the grid h
sizesAz .= zk_% —Z 1~ g—g k-AZ converge to 0, too. Hence, the convergence inspection dies
for A — 0.

1
2

With decreasind\{ the stretching functiofocally becomes increasingly linear. Consequently, with this
approach to refine the grid one gets formally 2nd order trimca&rrors for all two-point discretisations.

Discretisation error analysis - variant B To avoid the circumstance, that for increasing resolution
Az — 0 the grid stretching becoméascally more and more linear, one can prescribe a constant grid
stretching
Az,
Az 1
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instead. Without any loss of generality we can assumeghat, i.e. the grid becomes finer in the
vicinity of z, = 0. To this purpose we choose the grid points in

< Zl,flf% = h(x|)_§AZ— EAZ7 Zl,f% — h(XI)_EAZ,
M) ey L !
2y = h()+382  Z1, =h()+3Az+s07 ... (6)

Here the prescription of a slope hyx) is possible. The flattening of coordinate surfaces withéasmg
height is neglected. The position of the main levels agaitefsned by Eq. J).

One has to note, that such a grid refinement does not congtarpally, because one inserts smaller and
smaller grid boxes only on one end of the intervalzat0), without a significant refinement at the other
end Baldauf 2013.

2.2.1 Buoyancy term in thew-equation

Now we perform Taylor expansions féx — 0 andA{ — 0 around the position of the target point
(which itself can be a function dix andA({, too). At first, terms of the fornT’/Ty (or analogously
p'/p) occurring in the buoyancy term of threequation are inspected.

Discretisation error analysis - variant A.  With the above mentioned weighted vertical interpolations
for T’ (and the exact value of a reference temperafgra thew-position) one gets

T T/ , 1 9z \ % 921 4
I R [ (%) | ot v
Whereas with the simple arithmetic average it follows
T T 51 9z\? 921" 10% 9T’ 4
— = T+ | +0(AZ%). 8
PR A [ (05) 97 Taaz2 gz | TOBE) (8)

Compared to the weighted version an additional term oceungch stems from the curvature of the
coordinate transformation. Since no statements aboutigneo$ these terms can be done, it is at this
point hard to say which discretisation is the better one. él@s, the following analysis of the grid
stretching variant B gives a clearer statement.

Discretisation error analysis - variant B. Now we use a grid analogouo (6).

Use of weighted vertical interpolations féf results in

T T/ s 10T
— = —+Az.0+AZ
To To+ * [ 2(s+1)2Ty 02

Through the weighting this discretisation is indeed of 2riko inAz

} +0(AZ). (9)

Simple arithmetic average in the vertical results in

T T’ 1s—119T’ 1 £+1 10°T
T [ZS—i—lTo 02} Az [zmﬁﬁ] (@7).

This is only of first order for als + 1.

(10)

Now, the advantage of using weighted interpolations is @l

1 Actually, a slightly different grid is used, because thiads to more symmetric formulae $if applied to thew equation
terms, se®aldauf(2013.
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2.2.2 The divergence term

The same analysis is done now for the 2-dimensional divemeperator in terrain-following coordi-

nates L [oyguxy) 8 (d
. gu(x, z

Here, the metric terng’f %Z(u requires a weighted interpolation oto the half level position.

Discretisation error analysis - variant A. Interpolation by a weighted vertical average delivers

2 2 2 2
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whereas with only arithmetic averaging the second termachsts has a twice as large coefficient and
two additional terms occur:
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We see already here the benefit from the weightings.

Discretisation error analysis - variant B. Again we use the grid given by). If the metric term is
discretised by a weighted vertical average it follows

L 0u(x,2) | Ow(x.2) 10hd%u (1 5
divv = — ==z oo o (S-S +0(AZ, 0%, (14)

whereas with a discretisation by only an arithmetic averafpdlows

divy — Ju(x,z) dhdu(x,z) (1 1( l>>+0w(x,z)+

Jx ox 0z 2 4 S+§ 0z

2
+ Az<é%%<<§—s>+%<é—sz>>>+O(A22,Ax2). (15)

For a stretched grics@ 1) andon a tilted coordinate this is not a consistent discretisadit all!

To summarise, the higher numerical stability of the new\iastes solver (in particular in steeper terrain)
stems at least partly from a better and more consistentatisation in a vertically stretched grid. Proper
derivation (use of the exact positions of half and main l&yebdf truncation errors helps in the decision
in which way weightings should be used.

2.3 Comparison with an exact analytical solution

To check the previous theoretical considerations and teepifte benefit of the weightings an idealised
test with a vertically stretched grid is performed (see &atauf(2013).
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The test uses the expansion of quasi-linear gravity anddseanes induced by a weak warm bubble in
a channel. This test setup was proposedkgmarock and Klemfil994). Recently, an analytic solu-
tion for the linearisedgcompressiblenon-hydrostatic Euler equations and for an isothermabaphere
has been foundBaldauf and Brdar2013. Because this analytical solution bases on exactly theesam
equation set as the COSMO model, the numerical model exeatiyerges to this solution, as long as
non-linear terms remain small. This test case inspectssilaiicderms of the fast waves solver (with the

exception of the "horizontal’ metric terms) together witlettime integration scheme and the coupling
with the advection process.

The so called 'small-scale’ test setup consists of a weakwvbble, which is set into a 10 km high and
300 km wide channel with periodic boundary conditions inlibezontal. To demonstrate the benefit of
the vertical weightings in the new fast waves solver (FW2@wiwal grid stretching is introduced, with
a grid stretching ratio of 1:10 between the finest verticasimgize around = 5 km and the coarsest
mesh size around= 0 andz = 10 km. Figures2 show the grid for the first two chosen (horizontal)
resolutionsAx = 1000 m and 500 m with 300 20 and 600x 40 grid points, respectively, and the initial
temperature perturbatioR’ of the weak warm bubble &t= 0. The time steps for these simulations are
20 s and 10 s, respectively, and analogous for the finer tésmsu During the expansion of the waves a
background velocity field witluiy = 20 m/s advects the waves to the right. FigBghows the solution
for T andw of FW2 after 30 min. together with the analytic solution.

t=00:00:00, dx=1000m t=00:00:00, dx=500m
T
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Figure 2: Grid and initial temperature perturbation’Tt = 0) for the first two resolutionéx =
1000m, 500m for the linear gravity/sound wave test.
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Figure 3: Temperature perturbation’&nd vertical velocity w after 30 min. fakx = 250m hori-
zontal resolution. Comparison between FW2-simulatioadstd) and analytic solution (lines).

Figures4 show the error normk, andL. (the maximum norm) of the simulated solution against the
analytic solution after 30 min. In all cases, the errors ef tlew fast waves solver (FW2) are smaller
compared to those of the old one (FW1). For the coarsestutgmolthe error of FW1 is nearly twice
as large compared to FW2. One should notice that the moréegglope for FW2 does not mean a
smaller convergence rate. As one can see from the curvdttine tines, the simulation for the coarser
resolutions is not yet in the convergence range. In conttiagse error norms show that the errors for
not completely resolved structures are better with thdcadniveightings in the new FW2. For very fine
resolutions the error norms of FW1 and FW2 are nearly the sardeesult in a convergence rate of
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about 0.7 forT’. The reason for this behaviour is, that for an increasingremof vertical grid points,
the local grid stretching becomes increasingly linear.sTain be seen in figur&s too. Consequently,
the importance of the weightings in the averages decreases.
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Figure 4: Linear gravity/sound wave test with verticallyesthed grid. Error norms of Tagainst
the analytic solution for the new fast waves solver (FW2) gt the old one (FW1, blue) for
different resolutions.

2.3.1 Analytic solution on the sphere

Recently an analogous analytical solution for the lineatisompressible, non-hydrostatic Euler equa-
tionson the spherdas been foundBaldaufet al., 20130. Here, gravity and sound waves induced by
a weak warm bubble expand in a spherical shell around theesgimstead of a horizontal channel).
Figure5 showL, and L. errors of T’ andw for the ICON model against this solution for 'test sce-
nario (B)’, i.e. with Coriolis force in the 'global f-planepgroximation’. On the left, sound waves are
slightly damped by a weak off-centring in the vertical anddnyextrapolation by the timeleval— 1

in the horizontal pressure gradient. This results in a firdeo convergence of ICON. On the right,
these damping mechanisms are switched off (the ICON modertieless remains stable, as long as
all physical parameterisations are switched off); thisiitssn the expected second order convergence.

f=f0*10, t=011500 =f0*10, t=011500
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Figure 5: Error norms for 'test scenario B’ with Coriolis foe (‘global f-plane approximation’)
with ICON. Left: use of slight vertical off-centring and gntevel extrapolation in the pressure,
right: without any off-centring
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3 Influence of the water loading in strong convective simulabns

At 20 June 2013, after a very hot period of 4 days in middle Reya front moved from Southwest dur-
ing the evening. Whereas the front was simulated relatiwely by the convection-permitting COSMO-
DE, the precursory convergence line was much too weak andadietoo early (figurés, middle row)
compared to the radar observations (figbireop row).

One reason for this behaviour was a bug in the water loadingribation of the buoyancy term in the
equation for the vertical velocity. Since COSMO u3ésand p’ as prognostic variables the buoyancy
term must be rewritten with the aid of the ideal gas law by

P’ (poT’ PopoT >
0= =49 —=——+—= 16
g g PTo P pTqu (16)

with the moisture correction R
Ox == (E\:_]-)qv_qc_ch_--- 17

in which gy, gc, andg, are the specific masses of water vapour, cloud water, andresipectively.

In the previous versions the timelevel for these moisturiaiées was not the newest one ('now’) but one
time level older ('old’). The impact of this inconsistencgyaften small, however, in strongly convective
situations it becomes crucial. This can be demonstrateddimple idealised test setup. In a uniform
grid with grid mesh size ofAx = Ay = 2000 m,Az = 400 m a temperature perturbation of 2 K was set
in only onegrid box near the ground. The atmosphere is at rest and habla stratification analogous
to those chosen ileisman and Klemg§1982. Turbulent diffusion was switched off, only a 6-class
Graupel microphysics scheme was used. This setup was te#fedhe 'now’ and ’old’ timelevel
for the moisture variables in the water loading term. Aftee bnset of condensation, the 'old’ run
always contains slightly more water vapayrand less condensatg.( ¢, ...) compared to the 'now’
run. According to {7), both leads to stronger positive buoyancy and therefotarger values of the
maximum vertical velocityvmax (Figure7, top left). After about half an hour, these differencesviy
reduce. Nevertheless, the production of cloud wegtefFigure 7, top right) and consequently of rain
g- (bottom, left) is much larger in the 'now’ run, leading to regorecipitation at the ground (bottom,
right).

Analogously the real case run with the 'now’ timelevel foeth0 June 2013 produces more realistic
precipitation rates (figur6, bottom row). This example shows the importance of a pragatment of
the water loading contribution in the buoyancy term forisgly convective situations.

4 One-dimensional wave expansion with DG

In this section, we leave the 'Runge-Kutta’ dynamical cdr€®SMO and will consider the Discontin-
uous Galerkin (DG) method, which is a relatively new apphogicthe meteorological modelling. DG
methods are a combination of finite-element and finite-va@lunethods, i.e. the solutions are expanded
into basis functions in each grid cell and the prognosticaldes are conserved by using appropriate
numerical flux formulations. An introduction into DG metlsofr conservation equations is given e.g.
by Nair et al. (2011); see also the article by F. Giraldo in these proceedings.

Here, we want to highlight the wave expansion propertiessefai-discretisation by spatial DG methods
for a simple example, the linear wave equation in one dinoensi

Ju 0df, o
E + W = 0, fy:= gh, (18)
oh  of .
E + W - 0, fh — H()U. (19)
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Figure 6: 1-hour precipitation sums for 20 June 2013. Top:readar observations, middle row:
COSMO-DE 12 UTC run with timelevel bug (‘old’), bottom rowitlwcorrect timelevel ('now’).
Left: at 15 UTC (after 3h simulation), right at 18 UTC (afteh.
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Figure 7: Time series of yax and of averages ofg g and precipitation rate for the idealised
convection test (timestep 20 sec.). Red lines: correctéveé('now’), blue: false timelevel (old’).

This can be considered as a simplified shallow water equatittnconstant gravity acceleratiapand
constant mean fluid deptHy. Similar studies have been performed Hy and Atkins(2002, who
considered the 1D advection equation and the 2D wave equdtydHu et al. (1999, who considered
wave expansion through boundaries, anddnysworth (2004), who uses Bloch functions.

For the DG discretisation, we consider an equidistant giid grid mesh sizé\x. The j-th cell consists
of the interval [xjf%,xH%] with the centre poink;. In each grid cellj we expand the functions by
Legendre-PolynomialB until polynomial degreg

X — Xj
uxt) = z ( AX’), (20)
h(x,t) = Zh ( AX’). (21)
The Legendre-Polynomials lead to the mass matrix
[ X—X| X=X _
M”'m'_/ . H< DX ) P"‘<2 X > aimz +1' (22)
T2
The DG formulation of the above wave equation system readsr(E 0,1,...,p)
Ax d~_ _ num X=X =
mauj,m(t) =~ fax=), a0H)) P { 2 .
=3
ful apm (2%) d 23
+/ fula S dx (23)
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AX d'“' _ num X_Xj H%
Frggme®) = — Mo A (2550 )| o+
=3
de< )
[ it == 0

Since the fluxes are linear functions with constant coeffisiewe can calculate the flux integrals ana-
lytically. To this purpose, we define

X. .\ OP 25X
Bim i= /'*%H<2X XJ> m< AX)olx (25)
X

. AX ox
=2

One can show that for ath> 0,1 > 0 these integrals are given by

{ 0, ifm<Iorl+miseven

2, otherwise. (26)

Blm:

i

One may argue, that in an actual numerical implementati@set integralB, , are calculated by quadra-
ture formulae instead of an analytical integration. Howgife®ne uses Gaussian quadrature (or, more
precisely, Gauss-Legendre-quadrature), witfuadrature points, then the numerical quadratuexast

for polynomial degrees until@2— 1, which is just the polynomial degree used for Big.

Now, we choose thiocal Lax-Friedrichs-fluxtor the numerical flux
1 1
fLTum(q(Xj.g-% _)7q(xj+%+)) - ég (h(Xj+%—|—) + h(Xj+%_)) - éa <U(Xj+%+) - U(Xj+%_)) : (27)

The numerical diffusion-parameteris just the maximum eigenvalue of the Jacobian madt(tx). This
is the characteristic velocity of the wave system

a =c=+/gHo. (28)

After insertion of the expansior2() we get

p p_
fMalx 1 —),ax, 1 t) = %g (gohm,l ) (-1 +|§0hj7l(t)>
1 p p
—50 (Z Gjai(t) (=)' = G (t) ) (29)
1=0 1=0

and analogously

1 p p
a1 —) alx, 1 +) = §H0<I Gj 21 (t) (-1 + Uj,l(U)

1 p p
—5a <|;hj+l,l(t) (' =S hu() ) : (30)

After some simplifications this leads to (for=0,1,..., p):

Ax d . 1

[ - -
om0t = 593 [Arar® (DR ©) (<2 (1" 2] By () (-7

20’3 (a0 (<1 + 80 (~1- (D) <600 (-], @D
27 4 g i ’
~ p
72,2:1% jm(t) = %Hogo[ﬁjm(t)( g |()( 1+(—1)'+’"+2B.m)+u, 1 (1) ( 1)"‘}
1 p
4503 [fean® (D' R (-0 4Ry (7] @
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Of course, this leads to only 3-point operations, i.e. a D@wecouples only neighbouring grid points.

4.1 The dispersion relation

We make a wave ansatz in the form
Gimt) = Umn(k,w)e*—ot), (33)
Aimt) = hm(k, w)e&dw), (34)
mdistinguishes possible differemtodes Here, a 'mode’ is a continuous root of the dispersion retaefa

slightly different meaning of 'modes’ is used in the artiofe]. Thuburn in these proceedings). Inserted
into in (31) and B2) results in

—iwzﬁlu_m = %glf [—éK (—1)'+(—1+(—1)'+m+28.,m)+e-“< (_1)m}ﬁ.
1 20, | -
+ Eago [e‘K (1) + (—1— (-1)'*”‘) reK (—1)”‘} a, (35)
—iw%ﬁm = %Ho% [~ (1) + (~14 (-1 2By ) + e (-1 @
1=0
+ % 3 [éK (—1)'+(—1—(_1)'+”‘)+e*"< (—1)‘"}5, (36)

=0
with the dimensionless wave numb€r.= kAx. This is a homogeneous linear equation system for the

2(p+1) variablesui andh;. The dispersion relatiom(k) is determined by the polynomial d&t= 0 of
this linear equation system with the coefficient ma#kix

In the following we use the dimensionless variables

Q. =wit, C:= cg, B.= g.
AX C

Consequently we can write the true dispersion relatios +ck asQ = +CK.

In the casep = 0, only constant functions are used as the basis. Therdfosds just a normal finite-
volume method. We get the dispersion relation

Q? + 2iBC(1— cosK)Q + (B? — 1)C?sirK — 2BC?(1—cosK) = 0, (37)

which we can solve fof2:
Q = £CsinK —iBC(1— cosK). (38)

As expected, we get two branches (i.e. one mode for positidenagative expansion direction, respec-
tively). The positive branch is plotted as the red line infbfigures10. One recognises that the real
part of w vanishes for Ax-waves K = +m). This is a general property and drawback of an A-grid
(unstaggered grid) method. However, the internal numiediffsion of the Lax-Friedrichs flux (and
most other numerical flux formulations used) damps thistshaves (negative value of the imaginary
part of w).

Next we consider the expansion into linear polynomials=(1). Now, the dispersion relation is

Q* + a3+ a0% +a1Q +ag =0, (39)
az = 4iBC(cosK +2), (40)
a = 4(1-B?C?cosK + (12— 16B?)C?cosK — 16(1+B*)C?, (41)
ap = 24BC3(cosK —1), (42)
ag = 36(B%—1)C*sirfK+ 72(1—cosK)C*. (43)
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Figure 8: Dispersion relation Re(K)/C for p= 1 (only positive frequencies and fork0). Left:
both modes@ < kAx < i), right: extended schem® K kAx < 27).

We get 4 branches, i.e. two modes for the positive and two mfmidhe negative expansion direction.
The two positive modes are shown on the left side in figir&ometimes, the lower mode (which is
quite close to the true dispersion relatiOn= CK) is called the 'physical’ mode, whereas the second
mode is called 'spurious’ or 'parasitic’ mode. But if one roirs this second mode to wave numbers
in the rangert < K < 21, then one recognises, that this second mode also tries toxapyate the true
dispersion relation. Therefore, it is fair to denote it ashggical mode, too. Beyond, it is for each
value a a continuouscontinuation of the first mode. However, the second modestagainstw = 0
now for theAx-waves K = +2m). Again, we see that the DG discretisation indeed is an d-grethod.
The good news is, that the numerical diffusion again damesetshort waves, with a stronger scale
selectivity compared to the above cgse 0.

Of course, the dispersion relation for quadratic base fonst(p = 2) becomes even more complicated.
Now, it consists of 6 branches (three modes for positive agditive expansion direction, respectively).
Again, they approximate the true dispersion relation in @tiooous manner, but only if the diffusion
parameten is larger than a certain value. As one recognises in figuee/c > 0.15 is necessary to get
a continuous dispersion relation.

The above mentioned reflection of modes is used for figOr®r the polynomial degrees=0,1,2, 3.
For higher and higher degregsthe dispersion relation better and better approximatesrtie disper-
sion relation. Of course, this results in increasing maximwalues makw| for the frequency. This
naturally explains, why the Courant number limitation in D@&thods decreases with increasipg
However, DG discretisations tend to overestimate the fagu to a certain extend. For-0Op < 15 an
approximate relation of the form méw|Ax/c =~ 1+ 2.6p+ 0.33p? was determined, i.e. the maximum
frequency increases slightly stronger than linear witfrhis indicates, that very high order DG methods
with large p suffer too much from a Courant number limitation. Therefdres advisable not to choose
too high order DG schemes.

In any case, for all polynomial degre@sthe dispersion relation vanishes for the shortest waves wit
wave lengthh = 2/(p+ 1)Ax (or K = £(p+ 1)m). Therefore, DG methods are unstaggered grid dis-
cretisations. However, the numerical diffusion damps éhglsortest waves and the increasing scale
selectivity in the damping of short waves, indicated by tmaginary part ofew in 10 (right), is an
argument to use not too small values for
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Figure 9: Dispersion relation R&(K)/C of DG for polynomial degree $ 2 and different numerical
diffusion parameter values 8 0,0.1,0.15, 1.
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