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1 Introduction

At the Deutscher Wetterdienst (DWD) the COSMO model is currently used in two different settings: the
COSMO-EU with a grid mesh size of about 7 km covers most of the European continent and is driven by
the global model GME. Nested into COSMO-EU is the convection-permitting model COSMO-DE with
a grid mesh size of about 2.8 km. Similar setups are also used by most of the COSMO partners (Greece,
Italy, Poland, Russia, Romania, Switzerland). DWD additionally uses COSMO-DE in an ensemble
system with 20 members. At the end of 2014, GME will be replaced by the newly developed global
model ICON (see the article by G. Zängl in these proceedings). Probably mid of 2015, COSMO-EU
will be replaced by the static grid-refinement possibility of ICON, too.

The current COSMO model uses the so called ’Runge-Kutta’ dynamical core; a few aspects of that are
addressed in sections 2 and 3. In particular, section2 highlights consequences from the staggering in a
vertically stretched grid.

One drawback of the current dynamical core is its non-conservation of all prognostic variables. There-
fore, during the years 2008-2012, the COSMO priority project ’Conservative Dynamical Core (CDC)’
(Baldaufet al., 2013a) investigated two other possible candidates, namely the dynamical core of the
EULAG model (e.g.Prusaet al.(2008)) and a fully implicit finite volume solver (Jameson, 1991). Addi-
tionally, in the framework of the German Research Foundation program ’Metström’, the Discontinuous
Galerkin (DG) method is investigated for meteorological applications. This and the above mentioned
two dynamical cores of the CDC project are formulated on an unstaggered grid. Consequently, the last
section 4 investigates the properties of wave expansion in the DG formulation on unstaggered grids.

2 The new fast waves solver of the COSMO model - consequences from
the vertically stretched grid

2.1 A new fast waves solver

The basic time integration scheme of the COSMO model is quitesimilar to that of the WRF model
(Wicker and Skamarock, 2002; Baldauf, 2010): it is a split-explicit scheme which uses a large time step
for the ’slow’ processes advection, Coriolis force and the physical tendencies and a small time step for
the ’fast waves’ (sound and gravity waves). This time-splitting procedure is embedded into a 3-stage
Runge-Kutta scheme, which stably integrates the 5th order advection until Courant numbers of 1.42
(Baldauf, 2008). For the fast processes 2nd order centred differences for the spatial discretisation and a
horizontally forward-backward, vertically implicit (HE-VI) time integration is used.
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During the last about two years a new fast waves solver has been developed (Baldauf, 2013) which
mainly improves the following items:

1. use of weighted averaging operations forall vertical discretisations (also the implicit ones),

2. formulation of the divergence operator in strong conservation form,

3. the option to use a fully 3-dimensional (i.e. isotropic) divergence damping (instead of applying it
only to the horizontal momentum equations),

4. the option to use theMahrer(1984) discretisation for the horizontal pressure gradient terms.

Apart from that also smaller improvements e.g. in the formulation of boundary conditions or to fulfil
an additional slope-dependent stability condition for thedivergence damping have been done. This new
fast waves solver is contained in the official COSMO version 4.24 and is in operational use at DWD
since 16 Jan. 2013. It turned out, that it improves the overall numerical stability; this has been shown
in several real test cases that crashed before. In particular the ability to treat slightly steeper slopes has
been improved.

2.2 Vertically stretched grids

In the following we will consider the first item in the above list, the improvement of the discretisation for
vertically stretched grids. Generally the vertical stretching in the most operational applications is quite
large. At DWD the COSMO model uses a grid mesh size of∆z= 20 m at the ground and∆z≈ 1000 m
at the model top. This huge stretching needs of course special attention.

As an example we consider the discretisation of a first derivative ∂ψ/∂z in a stretched grid with grid
pointszk. We consider only at most 3-point formulae because the tridiagonal solver in the split-explicit
scheme does not allow wider stencils (solvers using more diagonals than three are possibly too inefficient
for HE-VI schemes). There are in principal two ways of discretising this. The first approach uses
weightings in the original space (Ikeda and Durbin, 2004), e.g.
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which can be derived by using a quadratic function through the three points.
In the second approach the coordinateszk are given by a coordinate transformationzk = f (ζk), ζk = k∆ζ
and the derivative can be calculated via the chain rule by
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where the second factor on the right is calculated e.g. by centred differences.

Both approaches are straightforward in an unstaggered A-grid but it is less clear how to proceed in
a staggered C-grid (or Lorenz grid). In the COSMO model thehalf levels zk+ 1

2
(where the vertical

velocitiesw are located) are defined by prescribed values which are additionally stretched according
to the orography elevation. Here, we can consider them as given by the above mentioned stretching
function. Themain levelszk (position of all scalars and (horizontally staggered) of the u andv velocity
components) are located exactly in the middle of two half levels
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(see figure1). Consequently, if one wants to interpolate from half levels to main levels an arithmetic
average

ψ̄i, j,k =
1
2
(ψi, j,k− 1

2
+ ψi, j,k+ 1

2
) (4)

is used, whereas for interpolations from main levels to halflevels a weighted average

ψ̄i, j,k− 1
2
= gi, j,k− 1

2
ψi, j,k +(1−gi, j,k− 1

2
)ψi, j,k−1 (5)

is used now, in which the weightsg take into account the grid distance. Derivatives are calculated always
by centred differences, possibly after an appropriate weighting of fields, if necessary.

One may ask, why such a weighting is necessary at all and why one cannot simply use the above
mentioned second approach. The answer is, that in this special staggering, i.e. the asymmetry in the
definition of main and half levels, not every information is contained in the metric coefficients (as would
be the case in an unstaggered grid). Due to this delicate asymmetry, we need a tool to decide which
discretisation is the best in stretched grids. As such a toolwe use a truncation error analysis. This is a
straightforward task for an equidistant grid, because one can simply led the grid mesh size∆z→ 0. How-
ever, for non-equidistant grids there exist infinitely manypossibilities to refine a grid. In the following,
two variants of grid refinements are analysed, that lead to different orders of the truncation error.

Figure 1: Grid positions and stretching in COSMO.

Discretisation error analysis - variant A In the first variant, the grid stretching is described by the
above mentionedcoordinate transformation zk+ 1

2
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= (k+ 1/2) ·∆ζ . With increasing grid refinement∆ζ → 0 all the grid mesh
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·∆ζ converge to 0, too. Hence, the convergence inspection takesplace

for ∆ζ → 0.

With decreasing∆ζ the stretching functionlocally becomes increasingly linear. Consequently, with this
approach to refine the grid one gets formally 2nd order truncation errors for all two-point discretisations.

Discretisation error analysis - variant B To avoid the circumstance, that for increasing resolution
∆zk → 0 the grid stretching becomeslocally more and more linear, one can prescribe a constant grid
stretching

∆zk

∆zk−1
= s
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instead. Without any loss of generality we can assume thats > 1, i.e. the grid becomes finer in the
vicinity of z0 = 0. To this purpose we choose the grid points in
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Here the prescription of a slope byh(x) is possible. The flattening of coordinate surfaces with increasing
height is neglected. The position of the main levels again isdefined by Eq. (3).

One has to note, that such a grid refinement does not convergeglobally, because one inserts smaller and
smaller grid boxes only on one end of the interval (atz= 0), without a significant refinement at the other
end (Baldauf, 2013).

2.2.1 Buoyancy term in thew-equation

Now we perform Taylor expansions for∆x → 0 and∆ζ → 0 around the position of the target point
(which itself can be a function of∆x and∆ζ , too). At first, terms of the formT ′/T0 (or analogously
p′/p) occurring in the buoyancy term of thew-equation are inspected.

Discretisation error analysis - variant A. With the above mentioned weighted vertical interpolations
for T ′ (and the exact value of a reference temperatureT0 at thew-position) one gets
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Whereas with the simple arithmetic average it follows
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Compared to the weighted version an additional term occurs,which stems from the curvature of the
coordinate transformation. Since no statements about the sign of these terms can be done, it is at this
point hard to say which discretisation is the better one. However, the following analysis of the grid
stretching variant B gives a clearer statement.

Discretisation error analysis - variant B. Now we use a grid analogous1 to (6).

Use of weighted vertical interpolations forT ′ results in
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Through the weighting this discretisation is indeed of 2nd order in∆z.

Simple arithmetic average in the vertical results in
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This is only of first order for alls 6= 1.

Now, the advantage of using weighted interpolations is obvious.

1 Actually, a slightly different grid is used, because this leads to more symmetric formulae ins if applied to thew equation
terms, seeBaldauf(2013).
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2.2.2 The divergence term

The same analysis is done now for the 2-dimensional divergence operator in terrain-following coordi-
nates
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Here, the metric term∂
∂ζ

∂z
∂xu requires a weighted interpolation ofu to the half level position.

Discretisation error analysis - variant A. Interpolation by a weighted vertical average delivers
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whereas with only arithmetic averaging the second term in brackets has a twice as large coefficient and
two additional terms occur:
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We see already here the benefit from the weightings.

Discretisation error analysis - variant B. Again we use the grid given by (6). If the metric term is
discretised by a weighted vertical average it follows
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whereas with a discretisation by only an arithmetic averageit follows
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For a stretched grid (s 6= 1) andon a tilted coordinate this is not a consistent discretisation at all!

To summarise, the higher numerical stability of the new fastwaves solver (in particular in steeper terrain)
stems at least partly from a better and more consistent discretisation in a vertically stretched grid. Proper
derivation (use of the exact positions of half and main levels!) of truncation errors helps in the decision
in which way weightings should be used.

2.3 Comparison with an exact analytical solution

To check the previous theoretical considerations and to prove the benefit of the weightings an idealised
test with a vertically stretched grid is performed (see alsoBaldauf(2013)).
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The test uses the expansion of quasi-linear gravity and sound waves induced by a weak warm bubble in
a channel. This test setup was proposed bySkamarock and Klemp(1994). Recently, an analytic solu-
tion for the linearised,compressible, non-hydrostatic Euler equations and for an isothermal atmosphere
has been found (Baldauf and Brdar, 2013). Because this analytical solution bases on exactly the same
equation set as the COSMO model, the numerical model exactlyconverges to this solution, as long as
non-linear terms remain small. This test case inspects almost all terms of the fast waves solver (with the
exception of the ’horizontal’ metric terms) together with the time integration scheme and the coupling
with the advection process.

The so called ’small-scale’ test setup consists of a weak warm bubble, which is set into a 10 km high and
300 km wide channel with periodic boundary conditions in thehorizontal. To demonstrate the benefit of
the vertical weightings in the new fast waves solver (FW2) a vertical grid stretching is introduced, with
a grid stretching ratio of 1:10 between the finest vertical mesh size aroundz= 5 km and the coarsest
mesh size aroundz= 0 andz= 10 km. Figures2 show the grid for the first two chosen (horizontal)
resolutions∆x = 1000 m and 500 m with 300×20 and 600×40 grid points, respectively, and the initial
temperature perturbationT ′ of the weak warm bubble att = 0. The time steps for these simulations are
20 s and 10 s, respectively, and analogous for the finer resolutions. During the expansion of the waves a
background velocity field withu0 = 20 m/s advects the waves to the right. Figure3 shows the solution
for T ′ andw of FW2 after 30 min. together with the analytic solution.

Figure 2: Grid and initial temperature perturbation T′(t = 0) for the first two resolutions∆x =
1000m,500m for the linear gravity/sound wave test.

Figure 3: Temperature perturbation T′ and vertical velocity w after 30 min. for∆x = 250m hori-
zontal resolution. Comparison between FW2-simulation (shaded) and analytic solution (lines).

Figures4 show the error normsL2 andL∞ (the maximum norm) of the simulated solution against the
analytic solution after 30 min. In all cases, the errors of the new fast waves solver (FW2) are smaller
compared to those of the old one (FW1). For the coarsest resolution the error of FW1 is nearly twice
as large compared to FW2. One should notice that the more gentle slope for FW2 does not mean a
smaller convergence rate. As one can see from the curvature of the lines, the simulation for the coarser
resolutions is not yet in the convergence range. In contrast, these error norms show that the errors for
not completely resolved structures are better with the vertical weightings in the new FW2. For very fine
resolutions the error norms of FW1 and FW2 are nearly the sameand result in a convergence rate of
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about 0.7 forT ′. The reason for this behaviour is, that for an increasing number of vertical grid points,
the local grid stretching becomes increasingly linear. This can be seen in figures2, too. Consequently,
the importance of the weightings in the averages decreases.
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Figure 4: Linear gravity/sound wave test with vertically stretched grid. Error norms of T′ against
the analytic solution for the new fast waves solver (FW2, red) and the old one (FW1, blue) for
different resolutions.

2.3.1 Analytic solution on the sphere

Recently an analogous analytical solution for the linearised, compressible, non-hydrostatic Euler equa-
tionson the spherehas been found (Baldaufet al., 2013b). Here, gravity and sound waves induced by
a weak warm bubble expand in a spherical shell around the sphere (instead of a horizontal channel).
Figure 5 show L2 and L∞ errors ofT ′ and w for the ICON model against this solution for ’test sce-
nario (B)’, i.e. with Coriolis force in the ’global f-plane approximation’. On the left, sound waves are
slightly damped by a weak off-centring in the vertical and byan extrapolation by the timeleveln−1
in the horizontal pressure gradient. This results in a first order convergence of ICON. On the right,
these damping mechanisms are switched off (the ICON model nevertheless remains stable, as long as
all physical parameterisations are switched off); this results in the expected second order convergence.
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Figure 5: Error norms for ’test scenario B’ with Coriolis force (’global f-plane approximation’)
with ICON. Left: use of slight vertical off-centring and time-level extrapolation in the pressure,
right: without any off-centring
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3 Influence of the water loading in strong convective simulations

At 20 June 2013, after a very hot period of 4 days in middle Europe, a front moved from Southwest dur-
ing the evening. Whereas the front was simulated relativelywell by the convection-permitting COSMO-
DE, the precursory convergence line was much too weak and died out too early (figure6, middle row)
compared to the radar observations (figure6, top row).

One reason for this behaviour was a bug in the water loading contribution of the buoyancy term in the
equation for the vertical velocity. Since COSMO usesT ′ and p′ as prognostic variables the buoyancy
term must be rewritten with the aid of the ideal gas law by

−g
ρ ′

ρ
= +g

(

p0

p
T ′

T0
− p′

p
+

p0

p
T
T0

qx

)

(16)

with the moisture correction

qx :=

(

Rv

Rd
−1

)

qv−qc−qr − . . . (17)

in which qv, qc, andqr are the specific masses of water vapour, cloud water, and rain, respectively.

In the previous versions the timelevel for these moisture variables was not the newest one (’now’) but one
time level older (’old’). The impact of this inconsistency is often small, however, in strongly convective
situations it becomes crucial. This can be demonstrated by asimple idealised test setup. In a uniform
grid with grid mesh size of∆x = ∆y = 2000 m,∆z= 400 m a temperature perturbation of 2 K was set
in only onegrid box near the ground. The atmosphere is at rest and has a stable stratification analogous
to those chosen inWeisman and Klemp(1982). Turbulent diffusion was switched off, only a 6-class
Graupel microphysics scheme was used. This setup was testedwith the ’now’ and ’old’ timelevel
for the moisture variables in the water loading term. After the onset of condensation, the ’old’ run
always contains slightly more water vapourqv and less condensate (qc, qr , ...) compared to the ’now’
run. According to (17), both leads to stronger positive buoyancy and therefore tolarger values of the
maximum vertical velocitywmax (Figure7, top left). After about half an hour, these differences inwmax

reduce. Nevertheless, the production of cloud waterqc (Figure7, top right) and consequently of rain
qr (bottom, left) is much larger in the ’now’ run, leading to more precipitation at the ground (bottom,
right).

Analogously the real case run with the ’now’ timelevel for the 20 June 2013 produces more realistic
precipitation rates (figure6, bottom row). This example shows the importance of a proper treatment of
the water loading contribution in the buoyancy term for strongly convective situations.

4 One-dimensional wave expansion with DG

In this section, we leave the ’Runge-Kutta’ dynamical core of COSMO and will consider the Discontin-
uous Galerkin (DG) method, which is a relatively new approach in the meteorological modelling. DG
methods are a combination of finite-element and finite-volume methods, i.e. the solutions are expanded
into basis functions in each grid cell and the prognostic variables are conserved by using appropriate
numerical flux formulations. An introduction into DG methods for conservation equations is given e.g.
by Nair et al. (2011); see also the article by F. Giraldo in these proceedings.

Here, we want to highlight the wave expansion properties of asemi-discretisation by spatial DG methods
for a simple example, the linear wave equation in one dimension

∂u
∂ t

+
∂ fu
∂x

= 0, fu := gh, (18)

∂h
∂ t

+
∂ fh
∂x

= 0, fh := H0u. (19)
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Figure 6: 1-hour precipitation sums for 20 June 2013. Top row: radar observations, middle row:
COSMO-DE 12 UTC run with timelevel bug (’old’), bottom row: with correct timelevel (’now’).
Left: at 15 UTC (after 3h simulation), right at 18 UTC (after 6h).
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Figure 7: Time series of wmax and of averages of qc, qr and precipitation rate for the idealised
convection test (timestep 20 sec.). Red lines: correct timelevel (’now’), blue: false timelevel (’old’).

This can be considered as a simplified shallow water equationwith constant gravity accelerationg and
constant mean fluid depthH0. Similar studies have been performed byHu and Atkins(2002), who
considered the 1D advection equation and the 2D wave equation, by Hu et al. (1999), who considered
wave expansion through boundaries, and byAinsworth(2004), who uses Bloch functions.

For the DG discretisation, we consider an equidistant grid with grid mesh size∆x. The j-th cell consists
of the interval[x j− 1

2
,x j+ 1

2
] with the centre pointx j . In each grid cellj we expand the functions by

Legendre-PolynomialsPl until polynomial degreep

u(x, t) =
p

∑
l=0

ũ j,l (t) Pl

(

2
x−x j

∆x

)

, (20)

h(x, t) =
p

∑
l=0

h̃ j,l (t) Pl

(

2
x−x j

∆x

)

. (21)

The Legendre-Polynomials lead to the mass matrix

M j,lm :=
∫ x

j+ 1
2

x
j− 1

2

Pl

(

2
x−x j

∆x

)

Pm

(

2
x−x j

∆x

)

dx= δlm
∆x

2m+1
. (22)

The DG formulation of the above wave equation system reads (for m= 0,1, . . . , p)

∆x
2m+1

d
dt

ũ j,m(t) = − f num
u (q(x−),q(x+))Pm

(

2
x−x j

∆x

)∣

∣

∣

∣

x
j+ 1

2
−

x
j− 1

2
+

+
∫

I j

fu(q(x)) ·
∂Pm

(

2x−xj

∆x

)

∂x
dx, (23)
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∆x
2m+1

d
dt

h̃ j,m(t) = − f num
h (q(x−),q(x+))Pm

(

2
x−x j

∆x

)
∣

∣

∣

∣

x
j+ 1

2
−

x
j− 1

2
+

+

∫

I j

fh(q(x)) ·
∂Pm

(

2x−xj

∆x

)

∂x
dx. (24)

Since the fluxes are linear functions with constant coefficients, we can calculate the flux integrals ana-
lytically. To this purpose, we define

Bl ,m :=
∫ x

j+ 1
2

x
j− 1

2

Pl

(

2
x−x j

∆x

) ∂Pm

(

2x−xj

∆x

)

∂x
dx. (25)

One can show that for allm≥ 0, l ≥ 0 these integrals are given by

Bl ,m =

{

0, if m≤ l or l +m is even
2, otherwise.

(26)

One may argue, that in an actual numerical implementation, these integralsBl ,m are calculated by quadra-
ture formulae instead of an analytical integration. However, if one uses Gaussian quadrature (or, more
precisely, Gauss-Legendre-quadrature), withp quadrature points, then the numerical quadrature isexact
for polynomial degrees until 2p−1, which is just the polynomial degree used for theBl ,m.

Now, we choose thelocal Lax-Friedrichs-fluxfor the numerical flux

f num
u (q(x j+ 1

2
−),q(x j+ 1

2
+)) =

1
2

g
(

h(x j+ 1
2
+)+h(x j+ 1

2
−)
)

− 1
2

α
(

u(x j+ 1
2
+)−u(x j+ 1

2
−)
)

. (27)

The numerical diffusion-parameterα is just the maximum eigenvalue of the Jacobian matrixf′(q). This
is the characteristic velocity of the wave system

α = c =
√

gH0. (28)

After insertion of the expansion (20) we get

f num
u (q(x j+ 1

2
−),q(x j+ 1

2
+)) =

1
2

g

(

p

∑
l=0

h̃ j+1,l (t) (−1)l +
p

∑
l=0

h̃ j,l (t)

)

−1
2

α

(

p

∑
l=0

ũ j+1,l (t) (−1)l −
p

∑
l=0

ũ j,l (t)

)

(29)

and analogously

f num
h (q(x j+ 1

2
−),q(x j+ 1

2
+)) =

1
2

H0

(

p

∑
l=0

ũ j+1,l (t) (−1)l +
p

∑
l=0

ũ j,l (t)

)

−1
2

α

(

p

∑
l=0

h̃ j+1,l (t) (−1)l −
p

∑
l=0

h̃ j,l (t)

)

. (30)

After some simplifications this leads to (form= 0,1, . . . , p):

∆x
2m+1

d
dt

ũ j,m(t) =
1
2

g
p

∑
l=0

[

h̃ j+1,l (t) (−1)l+1 + h̃ j,l (t)
(

−1+(−1)l+m+2Bl ,m

)

+ h̃ j−1,l (t) (−1)m
]

+
1
2

α
p

∑
l=0

[

ũ j+1,l (t) (−1)l + ũ j,l (t)
(

−1− (−1)l+m
)

+ ũ j−1,l (t) (−1)m
]

, (31)

∆x
2m+1

d
dt

h̃ j,m(t) =
1
2

H0

p

∑
l=0

[

ũ j+1,l (t) (−1)l+1 + ũ j,l (t)
(

−1+(−1)l+m+2Bl ,m

)

+ ũ j−1,l (t) (−1)m
]

+
1
2

α
p

∑
l=0

[

h̃ j+1,l (t) (−1)l + h̃ j,l (t)
(

−1− (−1)l+m
)

+ h̃ j−1,l (t) (−1)m
]

. (32)
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Of course, this leads to only 3-point operations, i.e. a DG method couples only neighbouring grid points.

4.1 The dispersion relation

We make a wave ansatz in the form

ũ j,m(t) = ūm(k,ω)ei(k j∆x−ωt), (33)

h̃ j,m(t) = h̄m(k,ω)ei(k j∆x−ωt). (34)

mdistinguishes possible differentmodes. Here, a ’mode’ is a continuous root of the dispersion relation (a
slightly different meaning of ’modes’ is used in the articleof J. Thuburn in these proceedings). Inserted
into in (31) and (32) results in

− iω
∆x

2m+1
ūm =

1
2

g
p

∑
l=0

[

−eiK (−1)l +
(

−1+(−1)l+m+2Bl ,m

)

+e−iK (−1)m
]

h̄l

+
1
2

α
p

∑
l=0

[

eiK (−1)l +
(

−1− (−1)l+m
)

+e−iK (−1)m
]

ūl , (35)

−iω
∆x

2m+1
h̄m =

1
2

H0

p

∑
l=0

[

−eiK (−1)l +
(

−1+(−1)l+m+2Bl ,m

)

+e−iK (−1)m
]

ūl

+
1
2

α
p

∑
l=0

[

eiK (−1)l +
(

−1− (−1)l+m
)

+e−iK (−1)m
]

h̄l , (36)

with the dimensionless wave numberK := k∆x. This is a homogeneous linear equation system for the
2(p+1) variables ¯ul andh̄l . The dispersion relationω(k) is determined by the polynomial detA = 0 of
this linear equation system with the coefficient matrixA.

In the following we use the dimensionless variables

Ω := ω ∆t, C := c
∆t
∆x

, B :=
α
c

.

Consequently we can write the true dispersion relationω = ±ck asΩ = ±CK.

In the casep = 0, only constant functions are used as the basis. Therefore,this is just a normal finite-
volume method. We get the dispersion relation

Ω2 +2iBC(1−cosK)Ω+(B2−1)C2 sin2K −2B2C2(1−cosK) = 0, (37)

which we can solve forΩ:
Ω = ±CsinK− iBC(1−cosK). (38)

As expected, we get two branches (i.e. one mode for positive and negative expansion direction, respec-
tively). The positive branch is plotted as the red line in both figures10. One recognises that the real
part of ω vanishes for 2∆x-waves (K = ±π). This is a general property and drawback of an A-grid
(unstaggered grid) method. However, the internal numerical diffusion of the Lax-Friedrichs flux (and
most other numerical flux formulations used) damps this short waves (negative value of the imaginary
part ofω).

Next we consider the expansion into linear polynomials (p = 1). Now, the dispersion relation is

Ω4 +a3Ω3 +a2Ω2 +a1Ω1 +a0 = 0, (39)

a3 = 4iBC(cosK +2), (40)

a2 = 4(1−B2)C2 cos2 K +(12−16B2)C2 cosK−16(1+B2)C2, (41)

a1 = 24iBC3(cosK−1), (42)

a0 = 36(B2−1)C4sin2 K +72(1−cosK)C4. (43)

118 ECMWF Seminar on Numerical Methods for Atmosphere and Ocean Modelling, 2-5 September 2013



BALDAUF : THE COSMOMODEL

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3

R
e(

om
eg

a)
 *

 d
x 

/ c

k * dx

B=1

mode 1
mode 2

K

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6

R
e(

om
eg

a)
 *

 d
x 

/ c

k * dx

B=1

"a1" u 1:10
K

Figure 8: Dispersion relation ReΩ(K)/C for p= 1 (only positive frequencies and for k≥ 0). Left:
both modes (0≤ k∆x≤ π), right: extended scheme (0≤ k∆x≤ 2π).

We get 4 branches, i.e. two modes for the positive and two modes for the negative expansion direction.
The two positive modes are shown on the left side in figure8. Sometimes, the lower mode (which is
quite close to the true dispersion relationΩ = CK) is called the ’physical’ mode, whereas the second
mode is called ’spurious’ or ’parasitic’ mode. But if one mirrors this second mode to wave numbers
in the rangeπ ≤ K ≤ 2π, then one recognises, that this second mode also tries to approximate the true
dispersion relation. Therefore, it is fair to denote it as a physical mode, too. Beyond, it is for each
valueα a continuouscontinuation of the first mode. However, the second mode turns againstω = 0
now for the∆x-waves (K = ±2π). Again, we see that the DG discretisation indeed is an A-grid method.
The good news is, that the numerical diffusion again damps these short waves, with a stronger scale
selectivity compared to the above casep = 0.

Of course, the dispersion relation for quadratic base functions (p = 2) becomes even more complicated.
Now, it consists of 6 branches (three modes for positive and negative expansion direction, respectively).
Again, they approximate the true dispersion relation in a continuous manner, but only if the diffusion
parameterα is larger than a certain value. As one recognises in figure9, α/c > 0.15 is necessary to get
a continuous dispersion relation.

The above mentioned reflection of modes is used for figure10 for the polynomial degreesp = 0,1,2,3.
For higher and higher degreesp, the dispersion relation better and better approximates the true disper-
sion relation. Of course, this results in increasing maximum values max|ω | for the frequency. This
naturally explains, why the Courant number limitation in DGmethods decreases with increasingp.
However, DG discretisations tend to overestimate the frequency to a certain extend. For 0≤ p≤ 15 an
approximate relation of the form max|ω |∆x/c≈ 1+2.6p+0.33p2 was determined, i.e. the maximum
frequency increases slightly stronger than linear withp. This indicates, that very high order DG methods
with largep suffer too much from a Courant number limitation. Therefore, it is advisable not to choose
too high order DG schemes.

In any case, for all polynomial degreesp the dispersion relation vanishes for the shortest waves with
wave lengthλ = 2/(p+ 1)∆x (or K = ±(p+ 1)π). Therefore, DG methods are unstaggered grid dis-
cretisations. However, the numerical diffusion damps these shortest waves and the increasing scale
selectivity in the damping of short waves, indicated by the imaginary part ofω in 10 (right), is an
argument to use not too small values forp.
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Figure 9: Dispersion relation ReΩ(K)/C of DG for polynomial degree p= 2 and different numerical
diffusion parameter values B= 0,0.1,0.15,1.
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