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Global transport models are used in a wide array of applications that range from short time scales
(air-quality predictions) to much longer ones (greenhouse gas budgets). It has been shown
repeatedly that the ability of these models to simulate transport across these time scales varies:
most do poorly on diurnal time scales because night-time stable boundary layer conditions are
poorly captured, all do really well on synoptic time scales because reanalyzed meteorological fields
are used as driver data, and at seasonal to interannual time scales performance varies strongly for
reasons that are not well understood. Stephens et al., (2007) for instance showed that models
predict very different vertical gradients between the surface and 4 km altitude, likely because of
different dry and wet convective exchange. Vila et al. (2004), and Pino et al., (2012) point strongly to
entrainment and boundary layer growth as dominant controls on CO2 mixing ratios under
convective conditions. But recent analyses from Williams et al. (2012), Sinclair et al (2010), and
Parazoo et al., (2011) suggest that exchange of trace gases is dominated by synoptic systems and
their ability to vent the PBL in large 5-10 day sweeps. In that light, it is interesting to note that even
within one modeling framework (TM5 in this case) the large scale transport properties can vary
strongly depending on which (mainly vertical) driver data is used from its parent ECMWF model.
Together, these diverse studies raise the question: which scale is important to capture in transport
models when one wants to investigate regional CO2 budgets?

In the presentation, two examples are given of carbon-water-energy exchange on relatively short
time scales. One is crop-atmosphere interactions on hourly time scales, and the other one is
interactions between the atmospheric PBL development and the CO2 budget on diurnal scales. Both
studies share a simple but powerful diagnostic tool, the mixed-layer model of the atmosphere. And
in both studies, we pay special attention to the coupling points between the carbon-water-energy
systems, given by the simulated stomatal resistance and the PBL height.

In our first example we demonstrate that the crop model is an excellent tool so simulate the
progression of carbon and water exchange along the seasonal growth curve of the plant. However, it
falls short on simulating the energy budget that goes along with that exchange, producing negative
sensible heat fluxes on many days. The reason is that the simulated crop nearly always operates at
full potential evaporation, taking energy from the atmosphere if needed to continue carbon uptake.
In the crop model, this normally does not affect the atmosphere because it is a prescribed reservoir
(from observations). But in a coupled mode with the mixed-layer providing dynamic top boundary
conditions, this obviously would lead to a rapid cooling of the lower atmosphere blocking vertical
trace gas exchange even on a sunny day. While stomatal resistance, net ecosystem exchange, crop
growth, water-use efficiency, and latent heat are thus all reasonable for this crop growth model, it
would fail completely to predict the observed PBL height, stressing the need to simultaneously
assess vegetation dynamics and atmospheric dynamics.

Similarly, our second example shows a straightforward method to estimate errors in daytime
simulated CO2 (or inversely, the CO2 surface flux) as a function of errors in dynamical variables in
the mixed-layer. These errors were estimated based on a suite of simulations with the WRF-CHEM
transport model using three popular parameterizations for vertical mixing near the surface (YSU,



MYJ, MYNNZ2.5), and two different CO2 surface flux implementations (SIBCASA, A-Gs). By selecting a
set of >100 mixed-layer days/locations over Europe for the month of June, these errors were
categorized and shown to be potentially very large: errors in the early morning PBL height (setting
the mixing volume for night-time CO2) can lead to errors of 0.5 to 5.0 ppm during the day (0.75 ppm
median), while a misrepresentation of the CO2 abundance above the PBL height (the concentration
to be entrained) is in the same order of magnitude. Typical errors in the simulation of the PBL height
itself (estimated to be a median of 260 meters) cause typical errors in estimated fluxes of 20% or
more. This is not just an effect of the depth of the mixing volume, but also because different PBL
growth rates introduce different amounts of free tropospheric CO2 into the PBL, and further affect
surface dynamics by increasing evaporative demand (dry air is entrained).

These examples together demonstrate the important coupling between numerical weather
prediction (NWP) and the CO2 budget. Not only would CO2 modeling profit from having the best
atmospheric (vertical) transport available, but also an estimate of the NWP errors (for instance from
an ensemble of surface-atmosphere exchange couplings) can help to improve estimates of CO2
fluxes. Finally, better understanding of surface exchange of CO2 also directly benefits the surface
water and energy balance through the coupling points identified in the presentation (stomatal
resistance and PBL height), and thus help to improve weather forecasts. This conclusion underlies
some of the recommendations made in the workshop that followed.
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Two examples, two scales

© (1) Crop-Atmosphere interactions

The boundary layer and biosphere form one
dynamic system with two main coupling points

© (2) Mixed-layer modeling of CO2 errors

These coupling points can be a key diagnostic
for simulations of the carbon balance
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——— Mixed-layer modeling
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—— (1) Crop-Atmosphere interactions
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——— (2) CO2 errors in the PBL
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——— (2) CO2 errors in the PBL
C=C @+Cf“(1 o) Yooz (h — hg)? + —— < wcoZ]; >
) 0 h/) ' 2n o0 h S
1 fa Yco2 2
<weo2ls > = = |Ch — Coho — CJ%(h — ho) — X222 (h — ho)?|.
() 9¢ _ Mo
aC, h

—

aC e 1 B . Veh :
2 ==Xy |n(Ctr—c, 0 _(t —to)(w'c|,)
dh 2 h2 p)

L —




——— (2) CO2 errors in the PBL
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——— (2) CO2 errors in the PBL
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:; Example of PBL heights and CO-
mole fractions derived with WRF

2000

1600}

PBL heigh [m]

400

1200}

8001

The range of PBL height in 9 realizations

— average
-  median
—  minimum
—  maximum

9 10 11 12 13 14 15 16

Time [UTC]

17

480

= + = =
o ~J £ (o)}
o o o o

CO2 mixing ratio in the PBL [ppm]
w
(]
o

360

The range of co2 mixing ratio in the PBL

— average
-  median
— minimum |7
—  maximum

9 10 11 12 13 14 15 16 17

Time [UTC]

N = 9 (schemes/methods)
M = |16 (selected mixed-layer cases June)



——— (2) CO2 errors in the PBL
Variable Error®
ho 84 m
h 262 m
Co 2.2 ppm
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(2) CO2 errors in the PBL
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(2) CO2 errors in the PBL
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© Dynamics can be a main source of errors in

© The effect of local errors is to some degree

Conclusions

©® Coupled carbon-water-energy exchange key

to understanding multiple scales

simulated CO2 mole fractions and estimated
surface fluxes

dampened beyond the synoptic time scale,
where main control is bulk ventilation rate

® Increasing role for NWP in understanding

carbon cycle behavior, ECMWF has an
important role to play
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