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ABSTRACT

This article discusses some of the ways in which linear waepagation can be misrepresented by numerical
methods. Examples include modes that fail to propagateemttat have group velocity of the wrong sign, the
appearance of extra branches in the dispersion relati@hthentrapping of waves due to grid inhomogenetities.
Some of the consequences for modelling the weather andteliara discussed, including a poor representation
of adjustment towards balance, an incorrect response tinfprand the spurious release of instability. Badly
behaved numerical wave solutions are often catl@hputational modedHowever, in many cases the distinction
between computational modes and physical modes is nota@lganor is it clear that all types of computational
modes are necessarily damaging to the model solution; esehmust be examined on its own merits.

1 Introduction

The governing equations of atmospheric dynamics, linedrabout a suitable basic state, support a va-
riety of fast (acoustic and inertio-gravity) and slow (Rmgswaves. We might hope that the numerical
methods we use in weather and climate models are able toreghtibehaviour of these linear waves,
as a pre-requisite for accurately solving the fully nordingoverning equations. However, numerical
methods can sometimes support waves that have no counterphe physical system, or whose be-
haviour, e.g. in terms of frequency or structure, is so balityorted that the physical counterpart is
difficult to identify. Such waves are often calledmputational modesvhilst those with an identifiable
physical counterpart are callgthysical modes

There is no widely accepted definition of a computational enofihe most well known examples are

waves that fail to propagate, but there are many other kimdsstorted behaviour. Indeed, there are
examples in which it may be difficult to decide whether a jgattir mode is physical or computational,

or in which a branch of modes switches behaviour betweenigdilyand computational as some param-
eter is varied, thus blurring the distinction. This artitd&es a rather broad view of the concept of a
computational mode, and surveys some of the ways in whichenioad wave propagation can depart
from physical wave propagation.

Computational modes can be damaging to weather or climatieisolutions in a variety of ways. They
may manifest themselves as a noisy solution, a failure toshadjorrectly towards balance, a spurious
release of instability, or an incorrect response to forcgmmne specific examples are given below. In cer-
tain numerical calculations computational modes can ihbdnvergence. Even if computational modes
have zero amplitude in the initial conditions, they will @énly be excited by the nonlinear dynamics,
physical parameterizations, boundary conditions, ana @sgimilation. Computational modes are often
characterized by small spatial or temporal scales. This#anay be feasible to suppress them using
a suitable scale-selective filter, but such tactics effetticoarsen the resolution of the model and are
also undesirable.
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Figure 1: Arrangement of variables on the square A-grid,i&t@nd C-grid.

For the sake of clarity, in this article the focus is on simpledel problems for which the analysis
is relatively tractable and the interpretation relativetyaightforward. In practical examples with a
more complete model the effects of computational modes eantermittent, difficult to diagnose, and
difficult to disentangle from a host of other complex proesss

2 Classical examples. modesthat fail to propagate

This section summarizes some of the most well-known exangleomputational modes. They are
all examples of non-zero disturbance patterns that arésiiyie’ to the dynamics, essentially because
of some averaging that hides the small scale structure iroon®ore variables. A useful technique for
analysing the number and type of stationary modes that a givmerical method supports is to examine
the kernels of the various linear operators, such as gradiarergence and Coriolis, that appear (Le
Roux et al. 2005, Rostand et al. 2008, Le Roux 2012). Suchekammalysis is complementary to the
von Neumann analysis technique discussed below in thatyitgives information on stationary modes
but is not restricted to grids with discrete translationahmetry.

2.1 Pressure modes

Consider the shallow water equations in Cartesian geonlgtearized about a resting basic state with
constant mean geopotenti@land constant Coriolis parameter

@+®(u+vw) = 0, 1)
h—fv+@ = 0O, 2)
Vt+fu+(g/ = 0. (3)

Here, @ is the perturbation geopotential an@dndv are the perturbation velocity components.

Now consider a centred difference spatial discretizatithese equations on a square unstaggered grid.
(This arrangement of variables is known as the ‘A-grid’: .Hig The discrete velocity equations are

(ﬂ+l7' (ﬂ—L'
_t Uij— fVi7j —{—71 > I = 0, (4)
17} Aj+1— @ j-1
—tVijj—FfUi’j—{—ij y ! = 0. (5)

Here,i and | are the grid cell indices in the- andy-directions, respectively, anfix and Ay are the
corresponding grid intervals. It is then clear that an @hitondition comprising zero velocity and a
checkerboard pattern ipwill be steady and so fail to propagate; the finite differefurenula estimates
the gradient ofp as zero.
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Similar problems occur with a B-grid (Fid), and with some finite element methods and spectral meth-
ods. Such pressure modes are well known throughout congnaaffluid dynamics and are widely
discussed in the literature.

2.2 Velocity modes

Again consider the shallow water equatioti}(3) discretized on an A-grid. This time restrict attention
to the non-rotating case= 0, and consider the discrete mass equation:

4 Ujgj—U-1j  Vij+1—Vij-1
_ . q3 ? 2 2 d = O 6

An initial condition comprising zero geopotential pertation and ai field with a 2\x wavelength in the
x-direction and & field with a 20y wavelength in thg-direction will be steady and so fail to propagate.
In this case the velocity divergence is estimated as zero.

Again similar problems can occur with the B-grid and withtaer finite element methods.

2.3 TheC-grid Coriolismode

The fact that it avoids the A-grid and B-grid pressure anacigy modes is one of the reasons for the
popularity of the C-grid (Figl) in weather and climate models. On the C-grid the derivatine(1)-

(3) are estimated over a single grid interval, so that the geopial gradient and velocity divergence
are visible even for grid-scale perturbations. The pricpag is that nowu andv points are staggered
relative to each other, so the Coriolis terms must be avdrage

(fV)iz12j =~ Z(Vi,j—l/2‘|‘Vi,j+1/2+Vi+1,j—1/2+Vi+1,j+l/2)a (7)
(fU)ijr12 =~ 2 (Ui—1/2) +Uit1/2j +Ui—1/2j+1+ Uis1/2,j41) - (8)

An initial condition with zerog and a non-divergent velocity field with a two-grid-lengttciiation in
u andv would fail to propagate (Walters and Carey 1984).

Von Neumann analysis (sectid@) shows that such Coriolis modes are, in fact, discrete goat® of

short wavelength steady geostrophic modes. As such, theirfeequency is actually physically correct
behaviour. What is unphysical is their structure; the spugivanishing of the Coriolis terms due to
averaging means that zero amplitude geopotential pettarbs needed to obtain geostrophic balance.

2.4 Thelorenz grid computational mode

Computational modes can also exist associated with thakdiscretization. A well known example

occurs with the vertical staggering known as the Lorenz (id. 2), where we are now considering the
fully compressible Euler equations with pressprand potential temperatugas prognostic variables.

In order to evaluate the vertical pressure gradient tenmlatels,0 must be vertically averaged:

0“ — nm+1 - rl 2l 1
Ccpb 57 o R~ Cpeml/sz, where O 12 = §(9m+ Om+1)- ©)

(Heremis the vertical level index, being integergtevels, 1 = (p/po)* is the Exner pressure, whepg
is a constant reference pressure arid equal to the gas constaRdivided by the specific heat capacity
at constant pressug.) Thus, a vertical two-grid-length oscillation can be aditie the 6 field of any
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Figure 2: Vertical arrangement of variables on the Loreni@dieft) and the Charney-Phillips grid (right). Vari-
ants with other combinations of prognostic variables exist

hydrostatically balanced solution to give another hyarically balanced solution: the oscillation éh
is invisible to the dynamics.

Essentially the same phenomenon occurs with other formentital averaging (e.g. weighted or geo-
metric mean), with other choices of prognostic thermodyicarariables, and with other forms of the
pressure gradient term such(4gp)d p/dz the computational mode continues to exist, though itestru
ture may be modified. The computational mode also occurs dndsyatic models; indeed it was first
noticed there (Hollingsworth 1995, Tokioka 1978).

When a linear system is forced at the frequency of one of itsnabmodes, there will usually be a
resonant response, with amplitude growing linearly in tifhbe existence of the computational mode
means that a Lorenz grid numerical model will have a spuriesenant response to a steady thermo-
dynamic forcing (Hollingsworth 1995, Schneider 1987). Tloeenz grid computational mode has also
been implicated in the spurious release of baroclinic bibta (Arakawa and Moorthi 1988).

The Lorenz grid computational mode can be avoided by stauypér relative top (or p) to obtain
the Charney-Phillips grid (Fig2), and expressing the pressure gradient terns,@I/dz. (Other
configurations are also possible, but some care is needetstoecthat the buoyancy term is accurately
captured; Thuburn and Woollings 2005, Thuburn 2006, ToyRaddall 2007).

3 Parasitic modes

Each of the examples presented in secflde the finest resolvable mode at the end of a spectrum of
which a significant part is badly behaved. One of the simpgamples is obtained by considering the
one-dimensional, linearized, non-rotating shallow watgrations:

@+dPu = O, (10)
uW+q@g = 0. (11)

By seeking wavelike solutions proportional to ¢kxx— wt)}, we obtain the dispersion relation
w? = K2, (12)
The analogous procedure for the discrete case is catledNeumann Analysi®.g. Durran 2010). We

seek solutions proportional to efipkiAx — wt)} for a spatial discretization, or #@&"exp{i(kiAx)} for a
space-time discretization, whemés the time step index. The numerical frequency can be iefeinom
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Figure 3: Left: exact and numerical (A-grid) dispersionagbns for the one-dimensional non-rotating shallow
water equations. Right: response to a slowly oscillatingiftg at the centre of the domain; top: on an unstag-
gered grid (A-grid) a spurious short wavelength responssuigerposed on the longwave response; bottom: a
staggered grid (C-grid) accurately captures the correctdavave response.

the amplification factor A The procedure gives information on the dispersion ratatibthe discrete
system, including its stability.

Figure3 shows the dispersion relation for the continuous systE2hand for a spatial centred difference
discretization on an unstaggered grid (the one-dimensamalogue of the A-grid). Only the positive
frequencies are shown. For the shortest resolvable widas— 11, the numerical frequency is zero;
these are the one-dimensional analogues of the pressureekuity modes of sectio?. However,
a large part of the numerical spectrum has significantly cedurequency. In particular, half of the
numerical spectrum hadw/dk of the wrong sign implying that packets of such waves haveigro
velocity of the wrong sign. Such modes are often caflathsitic modegTrefethen 1982).

The real atmosphere is continually perturbed away fromdstdtic and geostrophic balance by a variety
of processes, and adjusts back towards balance througladieion and eventual dissipation of fast
acoustic and inertio-gravity waves. Group velocity eriis those in Fig.3 severely compromise the

ability of a numerical model to capture the adjustment pse¢@rakawa and Lamb 1977, Randall 1994).

Another undesirable effect arises from the fact that theerigal dispersion relation in Fi® has two
values ofk for each value otv. This means that, when forced at a particular frequency, deincan
produce a spurious shortwave response as well as a physiealistic longwave response (F@right
panel).

4 Temporal computational modes, and space-timeinteraction

Computational modes can be associated with the time dizatien as well as the space discretization.
They typically occur for schemes that use more than two tievels, such as leapfrog and Adams-
Bashforth (e.g. Durran 2010).

Consider a system witN independent prognostic fields. The continuous disperstation will be a
degreeN polynomial inw, giving N normal modes for each wavenumber. For a two-time-level time
discretization, carrying out von Neumann analysis and eliing excess powers & leads toN equa-
tions, each a polynomial of degree 1AnElimination of unknowns reduces this to a single polyndmia
of degreeN in A, giving N numerical modes for each wavenumber, in agreement withahéncious
case. If, instead, we use dfr-time-level scheme then each prognostic equation redacasblyno-
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Figure 4: Numerical (solid) and exact (dashed) dispersiglations for the centred-time, centred-space discretiza-
tion of (10),(11). Left: c= 0.8; centre: c= 1, right: c = 1.2.

mial of degreeM — 1 in A, which, after elimination of unknowns, boils down to a palymal of degree
N(M — 1) in A for the discrete dispersion relation. Thus, for each wakdrer, we obtain an extra
N(M —2) modes. In other words, we obtain an extrdamiliesof modes for every extra time level.

In the limit of small timestepAt — 0, a physical mode should change by a vanishingly small atoun
over one time step, i.&A — 1. Any mode for whichA does not tend to 1 & — 0 must therefore be a
temporal computational mode.

The leapfrog scheme computational mode is undamf#gd=1) for an oscillatory system (with small
enoughAt) and unstable|f| > 1) for a damped system. Therefore, it must be controlled byesform

of temporal filter (Robert 1966, Asselin 1972, Williams 2D0Bor some schemes, such as the three-step
Adams-Bashforth scheme, the computational modes may leeenthy strongly damped for smadlt,

but care is required because they may become unstable faratedt (e.g. Durran 2010).

The use of a centred in time, centred in space scheme to ddly€X1) provides a simple but instructive
example of the interaction between spatial and temporapatational modes. The continuous system
has two prognostic variables and supports two physical syade the left and right propagating waves
corresponding to the positive and negative rootsdioifor each wavenumbek. Because the numeri-
cal scheme involves three time levels we expect to find foluegofA, and hence two physical and
two computational modes, for ea&hthis is borne out by von Neumann analysis, which leads to the
numerical dispersion relation

Sin? (whumt) = ¢2sir? (kAX) (13)

wherec = dJl/ZAt/Ax is the wave Courant number, ang,n, is the frequency of the numerical solution,
which can be deduced frodt whm= (i/At)InA.

This dispersion relation is plotted in Fig(left panel) forc = 0.8, and shows the expected four branches.
For the present discussion let us define the physical brariotee those that approach the true dispersion
relation akAx — 0. Then the smaller (positive and negative) frequency tresiare the physical modes
while the larger (positive and negative) frequency braadre the computational modes. The physical
mode branches include the parasitic modes discussed inrs8ct

Figure4 shows what happens to this dispersion relation exreases to 1 and then2l The physical
and computational mode branches merge and then divide.dgaiic > 1 the physical mode branches
now have small wavenumbers and the computational mode leariave large wavenumbers; there is
an intermediate range of unstable wavenumbers for whiale iseno real root fotwo,,,m. Some modes,
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including those that were parasitic modesdat 1, have switched between physical and computational
branches.

Although this is a simple example, and the 1 case is of little practical interest because it is unstable
it makes an important point that the distinction betweenspdat and computational modes might not
always be clear cut.

5 Familiesof spatial computational modes

We have already seen that the use of more than two time levéieitime integration scheme can give
rise to entire families of computational modes. Familiesmhputational modes can also arise through
the spatial discretization. This is particularly so when depart from traditional Cartesian or tensor
product grids such as latitude-longitude and consideeatsgrids using different kinds of polygonal
cells. Such grids are of increasing interest for ocean nfiadelbecause of the flexibility of polygons
in fitting complex coastlines, and for global atmosphericdeiting, because they can avoid the polar
resolution clustering of the latitude-longitude grid (eSganiforth and Thuburn 2012).

We use the linearf-plane shallow water equation¥){(3) for illustration because numerical wave prop-
agation has been relatively well studied for this systenek®g wavelike solutions ofl}-(3) leads to
the continuous dispersion relation

w(w?— f2—dk-k)=0. (14)

For each wavenumbér= (k,|) there are three roots. The= 0 root corresponds to steady geostrophic
modes while the other two correspond to eastward and wessfpvapagating inertio-gravity modes.

Provided the grid is sufficiently regular, i.e. provided #shdiscrete translational symmetry, von Neu-
mann analysis can still be carried out on polygonal grids flitst step is to identify the basic repeating
unit of the grid and its associated degrees of freedom. Spihere ar® degrees of freedom per basic

repeating unit. The translational symmetry then ensurasahvelike solutions exists for which each of
the D degrees of freedom is proportional to ik - x — wt) }. Elimination of unknowns then leads to a

polynomial of degre® for the frequencyw, implying a numerical dispersion relation withbranches.

If D > 3 then the excess branches might correspond to familiesngpotational modes.

Such von Neumann analysis has been used on polygonal aralofithe A-, B-, and C-grids, as well
as on a variety of finite element schemes (e.g. Le Roux et 8I7,20e Roux 2012; agai® degrees

of freedom per basic repeating unit leads to a dispersiatioal withD branches). Polygonal A-grids
suffer from parasitic modes like those discussed se@&i¢mg. Nickovic et al. 2002), so much recent
interest has focused on polygonal C-grids. The triangutal lreexagonal C-grids are discussed in the
following subsections.

51 Triangular C-grid

Polygonal C-grids generalize the square C-grid of Eigy storingg at cell centres and normal velocity
components at cell edges. Figeshows the basic repeating unit on the triangular C-grid.r& lage
two @ degrees of freedom, one in each triangle, and three veldeigyees of freedom. (The velocity
degrees of freedom at the other two edges belong to adjaseedting units.)

As expected, von Neumann analysis leads to a quintic digperslation (Danilov 2010):

w w w
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Figure 5: Basic repeating unit on the triangular C-grid @lgdnd hexagonal C-grid (right), showing the locations
of the geopotential and normal velocity degrees of freedom.

whereQ =8a?/3, a = ®¥/?/fd is the Rossby radius divided lojthe distance between adjacent triangle
centroids, an€ is a function of the wavenumbdér.

The w = 0 root corresponds to steady geostrophic modes, two of thezem roots correspond to
inertio-gravity modes, and the other two correspond tatiogravity-like modes. (A rule of thumb for
C-grids is that the number of geostrophic mode branches&ndiy the number of vorticity degrees of
freedom, i.e. the number of grid vertices, per basic repgainit, while the number of inertio-gravity
mode branches is given by the number of mass plus divergereeks of freedom, i.e. twice the number
of cells, per basic repeating unit.)

It is tempting to interpret the fourth and fifth roots as comapional modes. However, the issue is
complicated by the fact that there are enough degrees afdne@er basic repeating unit to support some
internal structure. Hence, a mode corresponding to a péatigalue ofk in the von Neumann analysis
might represent a mode of a larger wavenumber that is aliagell. The possibility that the fourth and
fifth branches might actually represent physically reabnaxtensions to higher wavenumber of the
second and third branches must be carefully checked by eiagthe mode structures and frequencies.

Figure6 shows the two positive frequency branches for various atfier. For small values ok, w/ f
should approach 1, which it always does for one of the bramchieus, this branch must be the unaliased
one for which the mode wavenumber agrees, at least appr@tymwaith the von Neumann analysks
For large values ofr, the two branches appear to cross at wavenurkleAx ~ 2.42, suggesting that
the upper branch might be a physically reasonable brancisevtnoe wavenumbeikgoss— K is aliased
into k. However, there are two flaws with this suggestion. Fkstssis different from the maximum
resolvable wavenumbég,,d = 2n/\/§, so some some wavenumbers would still be duplicated. $lecon
the branches approach each other but do not actually chesg is a small frequency gap. For smaller
a the gap is more noticeable. Thus although the aliased briansbme ways resembles a plausible
extension of the physical (unaliased) mode branch, in atlags it is unphysical.

For largea the aliased branch sits above the unaliased branch whikariall values ofx it sits below.
Fora = 1/(2v/2) the two branches touch kit= 0 and exchange roles. This is another example in which
the distinction between physical and computational mosléfuirred.

An almost identical phenomenon occurs with the RTO-PO fielenent pair on triangular grids (Le
Roux et al. 2007). This should not be too surprising, sineepllacement of geopotential and velocity
degrees of freedom is the same as on the triangular C-grid.
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Figure 6: Positive frequency branches of the triangular @glispersion relation(15) (w/ f vs kAx with | = 0)
for various values ofr.

5.2 Hexagonal C-grid

Figure5 shows the basic repeating unit on the hexagonal C-grid. sltame@ degree of freedom and
three velocity degrees of freedom. Thus we expect a quautivenical dispersion relation, and this is
confirmed by von Neumann analysis (Thuburn 2008):

(2){(8) -+ -0

whereT andSare functions ok. There are two branches of zero frequency geostrophic nmauksvo
branches of inertio-gravity modes. (Note that special areeded in the discretization of the Coriolis
terms, otherwise there are no steady modes, Nickovit 2082, Thuburn 2008.)

The extra branch is now a branch of geostrophic modes. Agaanedul examination is needed to deter-
mine whether or not it can be interpreted as a physicallyoresse aliased extension of the unaliased
physical branch. For thé-plane case that leads tbg) all the geostrophic mode frequencies are exactly
zero, which is physically correct. Moreover, the mode dtrres on the second geostrophic branch are
indeed plausible approximations to higher wavenumber so@lus, on the basis of thisplane anal-
ysis, we might be justified in interpreting the second gemtic mode branch as an aliased extension
of the physical geostrophic mode branch.

It is only when we introduce B effect, providing a Rossby wave propagation mechanisn utahys-
ical behaviour becomes apparent. (We must then make a goasigphic approximation to make the
von Neumann analysis tractable, Thuburn 2008.) The sec@mth modes are then found to have pos-
itive frequency (for positivd), whereas we might expect negative frequency for Rossbhyem@eg.7).
This would, in fact, be acceptable if we could interpret theetwavenumber of the modes as having
a negative zonal component (aliasing into the posikivd the von Neumann analysis). However, the
magnitude of the mode frequency is also much smaller thanoftthe continous equation mode it is
supposed to approximate. Moreover, the mode frequenciéisesecond Rossby mode branch are very
strongly sensistive to the details of the discretizatiothefCoriolis term, whereas the frequencies of the
other three branches are much more robust.

Thus, there are some unphysical aspects of the second Rosglgybranch that could justify calling it
a computational mode branch, though these are rather mbtie $an in the case of the triangular C-
grid. As on the triangular C-grid, there can be an exchangele$ between physical and computational
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Figure 7: Four branches of thg-plane dispersion relation for the hexagonal C-grid. Cessre theoretical
predictions. Plus symbols are from a numerical eigenvalalewation in a channel. Diamonds are for the
continuous equations. Frequencies greater than's 1 in magnitude are for inertio-gravity modes. Smaller
negative frequencies are for the physical Rossby mode hraBmaller positive frequencies are for the second
Rossby mode branch (crosses and pluses) or for modes théd wias into the plotted mode number at this
resolution (diamonds).

branches as parameters are varied (e.g. Fig. 6 of ThubuiB).200

The main inaccuracy of the second Rossby mode branch ishén&tetquencies are too small. However,
small scale Rossby modes do have very small intrinsic freguanyway, so that, in the presence of
a background flow (which is usually omitted in the von Neumanalysis), the associated potential
vorticity field is advected almost passively by the backgafiow. The fact that the second branch
Rossby modes are excessively passive then makes negligfielence to the behaviour. This argument
suggests that the extra Rossby mode branch might be réyatigemless in practice, if not positively
beneficial (by providing extra resolution for potential ticity). Experience with the MPAS hexagonal
C-grid atmosphere and ocean models (W. Skamarock, T. Rjmm#esonal communication) and with a
hexagonal C-grid shallow water model developed under theg&ddo project has not revealed any prob-
lems that can be attributed to the second Rossby mode brRachsed efforts to devise an idealized test
problem that would reveal a damaging effect of the seconalRosode branch have not yet revealed
any such problem (A. Staniforth, personal communication).

6 Trapped modes

Most of our understanding of numerical wave disperson cofraa regular grid cases for which
progress can be made through mathematical analysis. Quliaregrids, such as stretched grids, the
behaviour can be significantly more complex. One intergstinenomenon is that waves can be re-
fracted, reflected, or even trapped by grid inhomogeneities

For the simplest problems on one-dimensional grids somlgtaoa progress is still possible (e.g. Vich-
nevetsky 1987, Long and Thuburn 2011). For conservativeregulifference methods it can be shown
that a wave packet will be reflected from a location on the gftbre its numerical group velocity
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Figure 8: Left: normal mode frequencies (only positive freqcies shown) for the systgih7): continuous
equations (+ symbols), uniform grid (x symbols), and strettgrid with successive layer thicknesses in the ratio
1.042 (circles). Right: p-structure of the7!" stretched grid normal mode showing trapping in the fine-etian

part of the grid.

goes to zero; the reflected wave may have the same wavelentik acident wave packet, or may be
converted into a parasitic mode, depending on the detatlseafiumerical method.

The possibility of trapping has consequences for the gpectf normal modes on non-uniform grids.
(In these more complex problems mathematical analysisrbesdntractable; to make progress the
system matrix must be built and its eigenvalues found nuwrallyi) Figure8 shows the frequency

spectrum for the simple acoustic wave system

P+ c?w, =0,

W + p, =0,

17

solved numerically on a stretched grid of 20 levels. At filsinge the higher frequencies appear to be
closer to the continuous dispersion relation than the nisadrequencies for a uniform grid. However,
examination of the mode structures for the higher frequenages shows that they are in fact trapped

in the finer resolution

region of the grid.

Another example, taken from Weller et al. (2012), is showikign 9. It shows the highest frequency

eigenmode for the linearized shallow water equations onading sphere found numerically on coarse
versions of three different spherical C-grids. On each, ghie mode is trapped in regions of the grid that
have finer grid cells than elsewhere, giving a two-dimeraianalogue of the one-dimensional trapping

shown in Fig.8.

7 Conclusions

Linear wave propagation can be misrepresented by numenietilods in a variety of ways. Examples
presented here include modes that fail to propagate, piarawdes with reversed group velocity, the
appearance of extra branches of modes in the dispersidioretiue to either the time or space dis-
cretization, and wave trapping by grid inhomogeneitieschSpoor wave behaviour can be damaging
to weather and climate model numerical solutions, for edarfgading to a noisy solution, a failure to

adjust correctly towards balance, a spurious release tfiilisy, or an incorrect response to forcing.

The degree to which a given mode or branch of modes misrapsetiee physics, and therefore dam-
ages the solution, can vary considerably. It is thereforestraightforward to give a universally ap-
plicable definition oftomputational modelndeed, modes can switch between physical-mode-like and
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0.00094—%

Figure 9: Geopotential structure of the highest frequenbgli®w water normal mode found on a latitude-
longitude grid (left), a hexagonal voronoi grid (centrepdaa ‘voronized’ cubed sphere grid (right) (Weller et
al. 2012).

computational-mode-like behaviour as parameters ared/afiihe important thing is to be aware of the
ways in which linear wave propagation can be misrepreseatetitheir possible consequences, and for
model developers to analyse for such behaviour at an eady sif model design.
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