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ABSTRACT

This article discusses some of the ways in which linear wave propagation can be misrepresented by numerical
methods. Examples include modes that fail to propagate, modes that have group velocity of the wrong sign, the
appearance of extra branches in the dispersion relation, and the trapping of waves due to grid inhomogeneities.
Some of the consequences for modelling the weather and climate are discussed, including a poor representation
of adjustment towards balance, an incorrect response to forcing, and the spurious release of instability. Badly
behaved numerical wave solutions are often calledcomputational modes. However, in many cases the distinction
between computational modes and physical modes is not clearcut, nor is it clear that all types of computational
modes are necessarily damaging to the model solution; each case must be examined on its own merits.

1 Introduction

The governing equations of atmospheric dynamics, linearized about a suitable basic state, support a va-
riety of fast (acoustic and inertio-gravity) and slow (Rossby) waves. We might hope that the numerical
methods we use in weather and climate models are able to capture the behaviour of these linear waves,
as a pre-requisite for accurately solving the fully nonlinear governing equations. However, numerical
methods can sometimes support waves that have no counterpart in the physical system, or whose be-
haviour, e.g. in terms of frequency or structure, is so badlydistorted that the physical counterpart is
difficult to identify. Such waves are often calledcomputational modes, whilst those with an identifiable
physical counterpart are calledphysical modes.

There is no widely accepted definition of a computational mode. The most well known examples are
waves that fail to propagate, but there are many other kinds of distorted behaviour. Indeed, there are
examples in which it may be difficult to decide whether a particular mode is physical or computational,
or in which a branch of modes switches behaviour between physical and computational as some param-
eter is varied, thus blurring the distinction. This articletakes a rather broad view of the concept of a
computational mode, and surveys some of the ways in which numerical wave propagation can depart
from physical wave propagation.

Computational modes can be damaging to weather or climate model solutions in a variety of ways. They
may manifest themselves as a noisy solution, a failure to adjust correctly towards balance, a spurious
release of instability, or an incorrect response to forcing; some specific examples are given below. In cer-
tain numerical calculations computational modes can inhibit convergence. Even if computational modes
have zero amplitude in the initial conditions, they will certainly be excited by the nonlinear dynamics,
physical parameterizations, boundary conditions, and data assimilation. Computational modes are often
characterized by small spatial or temporal scales. This means it may be feasible to suppress them using
a suitable scale-selective filter, but such tactics effectively coarsen the resolution of the model and are
also undesirable.
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Figure 1: Arrangement of variables on the square A-grid, B-grid and C-grid.

For the sake of clarity, in this article the focus is on simplemodel problems for which the analysis
is relatively tractable and the interpretation relativelystraightforward. In practical examples with a
more complete model the effects of computational modes can be intermittent, difficult to diagnose, and
difficult to disentangle from a host of other complex processes.

2 Classical examples: modes that fail to propagate

This section summarizes some of the most well-known examples of computational modes. They are
all examples of non-zero disturbance patterns that are ‘invisible’ to the dynamics, essentially because
of some averaging that hides the small scale structure in oneor more variables. A useful technique for
analysing the number and type of stationary modes that a given numerical method supports is to examine
the kernels of the various linear operators, such as gradient, divergence and Coriolis, that appear (Le
Roux et al. 2005, Rostand et al. 2008, Le Roux 2012). Such kernel analysis is complementary to the
von Neumann analysis technique discussed below in that it only gives information on stationary modes
but is not restricted to grids with discrete translational symmetry.

2.1 Pressure modes

Consider the shallow water equations in Cartesian geometry, linearized about a resting basic state with
constant mean geopotentialΦ and constant Coriolis parameterf :

φt + Φ(ux +vy) = 0, (1)

ut − f v+ φx = 0, (2)

vt + f u+ φy = 0. (3)

Here,φ is the perturbation geopotential andu andv are the perturbation velocity components.

Now consider a centred difference spatial discretization of these equations on a square unstaggered grid.
(This arrangement of variables is known as the ‘A-grid’: Fig. 1.) The discrete velocity equations are

∂
∂ t

ui, j − f vi, j +
φi+1, j −φi−1, j

2∆x
= 0, (4)

∂
∂ t

vi, j + f ui, j +
φi, j+1−φi, j−1

2∆y
= 0. (5)

Here, i and j are the grid cell indices in thex- andy-directions, respectively, and∆x and ∆y are the
corresponding grid intervals. It is then clear that an initial condition comprising zero velocity and a
checkerboard pattern inφ will be steady and so fail to propagate; the finite differenceformula estimates
the gradient ofφ as zero.
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Similar problems occur with a B-grid (Fig.1), and with some finite element methods and spectral meth-
ods. Such pressure modes are well known throughout computational fluid dynamics and are widely
discussed in the literature.

2.2 Velocity modes

Again consider the shallow water equations (1)-(3) discretized on an A-grid. This time restrict attention
to the non-rotating casef = 0, and consider the discrete mass equation:

∂
∂ t

φi, j + Φ
(

ui+1, j −ui−1, j

2∆x
+

vi, j+1−vi, j−1

2∆y

)

= 0. (6)

An initial condition comprising zero geopotential perturbation and au field with a 2∆x wavelength in the
x-direction and av field with a 2∆y wavelength in they-direction will be steady and so fail to propagate.
In this case the velocity divergence is estimated as zero.

Again similar problems can occur with the B-grid and with certain finite element methods.

2.3 The C-grid Coriolis mode

The fact that it avoids the A-grid and B-grid pressure and velocity modes is one of the reasons for the
popularity of the C-grid (Fig.1) in weather and climate models. On the C-grid the derivatives in (1)-
(3) are estimated over a single grid interval, so that the geopotential gradient and velocity divergence
are visible even for grid-scale perturbations. The price topay is that nowu andv points are staggered
relative to each other, so the Coriolis terms must be averaged:

( f v)i+1/2, j ≈ f
4

(

vi, j−1/2 +vi, j+1/2 +vi+1, j−1/2 +vi+1, j+1/2
)

, (7)

( f u)i, j+1/2 ≈ f
4

(

ui−1/2, j +ui+1/2, j +ui−1/2, j+1 +ui+1/2, j+1
)

. (8)

An initial condition with zeroφ and a non-divergent velocity field with a two-grid-length oscillation in
u andv would fail to propagate (Walters and Carey 1984).

Von Neumann analysis (section3) shows that such Coriolis modes are, in fact, discrete analogues of
short wavelength steady geostrophic modes. As such, their zero frequency is actually physically correct
behaviour. What is unphysical is their structure; the spurious vanishing of the Coriolis terms due to
averaging means that zero amplitude geopotential perturbation is needed to obtain geostrophic balance.

2.4 The Lorenz grid computational mode

Computational modes can also exist associated with the vertical discretization. A well known example
occurs with the vertical staggering known as the Lorenz grid(Fig. 2), where we are now considering the
fully compressible Euler equations with pressurep and potential temperatureθ as prognostic variables.
In order to evaluate the vertical pressure gradient term atw-levels,θ must be vertically averaged:

cpθ
∂Π
∂z

∣

∣

∣

∣

m+1/2
≈ cpθm+1/2

Πm+1−Πm

∆z
, where θ m+1/2 =

1
2
(θm+ θm+1). (9)

(Herem is the vertical level index, being integer atp-levels,Π = (p/p0)
κ is the Exner pressure, wherep0

is a constant reference pressure andκ is equal to the gas constantRdivided by the specific heat capacity
at constant pressurecp.) Thus, a vertical two-grid-length oscillation can be added to theθ field of any
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Figure 2: Vertical arrangement of variables on the Lorenz grid (left) and the Charney-Phillips grid (right). Vari-
ants with other combinations of prognostic variables exist.

hydrostatically balanced solution to give another hydrostatically balanced solution: the oscillation inθ
is invisible to the dynamics.

Essentially the same phenomenon occurs with other forms of vertical averaging (e.g. weighted or geo-
metric mean), with other choices of prognostic thermodynamic variables, and with other forms of the
pressure gradient term such as(1/ρ)∂ p/∂z; the computational mode continues to exist, though its struc-
ture may be modified. The computational mode also occurs in hydrostatic models; indeed it was first
noticed there (Hollingsworth 1995, Tokioka 1978).

When a linear system is forced at the frequency of one of its normal modes, there will usually be a
resonant response, with amplitude growing linearly in time. The existence of the computational mode
means that a Lorenz grid numerical model will have a spuriousresonant response to a steady thermo-
dynamic forcing (Hollingsworth 1995, Schneider 1987). TheLorenz grid computational mode has also
been implicated in the spurious release of baroclinic instability (Arakawa and Moorthi 1988).

The Lorenz grid computational mode can be avoided by staggering θ relative to p (or ρ) to obtain
the Charney-Phillips grid (Fig.2), and expressing the pressure gradient term ascpθ∂Π/∂z. (Other
configurations are also possible, but some care is needed to ensure that the buoyancy term is accurately
captured; Thuburn and Woollings 2005, Thuburn 2006, Toy andRandall 2007).

3 Parasitic modes

Each of the examples presented in section2 is the finest resolvable mode at the end of a spectrum of
which a significant part is badly behaved. One of the simplestexamples is obtained by considering the
one-dimensional, linearized, non-rotating shallow waterequations:

φt + Φux = 0, (10)

ut + φx = 0. (11)

By seeking wavelike solutions proportional to exp{i(kx−ωt)}, we obtain the dispersion relation

ω2 = k2Φ. (12)

The analogous procedure for the discrete case is calledvon Neumann Analysis(e.g. Durran 2010). We
seek solutions proportional to exp{i(ki∆x−ωt)} for a spatial discretization, or toAnexp{i(ki∆x)} for a
space-time discretization, wheren is the time step index. The numerical frequency can be inferred from
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Figure 3: Left: exact and numerical (A-grid) dispersion relations for the one-dimensional non-rotating shallow
water equations. Right: response to a slowly oscillating forcing at the centre of the domain; top: on an unstag-
gered grid (A-grid) a spurious short wavelength response issuperposed on the longwave response; bottom: a
staggered grid (C-grid) accurately captures the correct longwave response.

the amplification factor A. The procedure gives information on the dispersion relation of the discrete
system, including its stability.

Figure3 shows the dispersion relation for the continuous system (12) and for a spatial centred difference
discretization on an unstaggered grid (the one-dimensional analogue of the A-grid). Only the positive
frequencies are shown. For the shortest resolvable waves,k∆x = π, the numerical frequency is zero;
these are the one-dimensional analogues of the pressure andvelocity modes of section2. However,
a large part of the numerical spectrum has significantly reduced frequency. In particular, half of the
numerical spectrum has∂ω/∂k of the wrong sign implying that packets of such waves have group
velocity of the wrong sign. Such modes are often calledparasitic modes(Trefethen 1982).

The real atmosphere is continually perturbed away from hydrostatic and geostrophic balance by a variety
of processes, and adjusts back towards balance through the radiation and eventual dissipation of fast
acoustic and inertio-gravity waves. Group velocity errorslike those in Fig.3 severely compromise the
ability of a numerical model to capture the adjustment process (Arakawa and Lamb 1977, Randall 1994).

Another undesirable effect arises from the fact that the numerical dispersion relation in Fig.3 has two
values ofk for each value ofω . This means that, when forced at a particular frequency, a model can
produce a spurious shortwave response as well as a physically realistic longwave response (Fig.3 right
panel).

4 Temporal computational modes, and space-time interaction

Computational modes can be associated with the time discretization as well as the space discretization.
They typically occur for schemes that use more than two time levels, such as leapfrog and Adams-
Bashforth (e.g. Durran 2010).

Consider a system withN independent prognostic fields. The continuous dispersion relation will be a
degreeN polynomial inω , giving N normal modes for each wavenumber. For a two-time-level time
discretization, carrying out von Neumann analysis and cancelling excess powers ofA leads toN equa-
tions, each a polynomial of degree 1 inA. Elimination of unknowns reduces this to a single polynomial
of degreeN in A, giving N numerical modes for each wavenumber, in agreement with the continuous
case. If, instead, we use anM-time-level scheme then each prognostic equation reduces to a polyno-
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Figure 4: Numerical (solid) and exact (dashed) dispersion relations for the centred-time, centred-space discretiza-
tion of (10),(11). Left: c= 0.8; centre: c= 1; right: c = 1.2.

mial of degreeM−1 in A, which, after elimination of unknowns, boils down to a polynomial of degree
N(M − 1) in A for the discrete dispersion relation. Thus, for each wavenumber, we obtain an extra
N(M−2) modes. In other words, we obtain an extraN familiesof modes for every extra time level.

In the limit of small timestep,∆t → 0, a physical mode should change by a vanishingly small amount
over one time step, i.e.A→ 1. Any mode for whichA does not tend to 1 as∆t → 0 must therefore be a
temporal computational mode.

The leapfrog scheme computational mode is undamped (|A| = 1) for an oscillatory system (with small
enough∆t) and unstable (|A| > 1) for a damped system. Therefore, it must be controlled by some form
of temporal filter (Robert 1966, Asselin 1972, Williams 2009). For some schemes, such as the three-step
Adams-Bashforth scheme, the computational modes may be inherently strongly damped for small∆t,
but care is required because they may become unstable for moderate∆t (e.g. Durran 2010).

The use of a centred in time, centred in space scheme to solve (10), (11) provides a simple but instructive
example of the interaction between spatial and temporal computational modes. The continuous system
has two prognostic variables and supports two physical modes, i.e. the left and right propagating waves
corresponding to the positive and negative roots forω , for each wavenumberk. Because the numeri-
cal scheme involves three time levels we expect to find four values ofA, and hence two physical and
two computational modes, for eachk; this is borne out by von Neumann analysis, which leads to the
numerical dispersion relation

sin2 (ωnum∆t) = c2 sin2(k∆x) , (13)

wherec= Φ1/2∆t/∆x is the wave Courant number, andωnum is the frequency of the numerical solution,
which can be deduced fromA: ωnum = (i/∆t) lnA.

This dispersion relation is plotted in Fig.4 (left panel) forc= 0.8, and shows the expected four branches.
For the present discussion let us define the physical branches to be those that approach the true dispersion
relation ask∆x→ 0. Then the smaller (positive and negative) frequency branches are the physical modes
while the larger (positive and negative) frequency branches are the computational modes. The physical
mode branches include the parasitic modes discussed in section 3.

Figure4 shows what happens to this dispersion relation asc increases to 1 and then 1.2. The physical
and computational mode branches merge and then divide again. Forc > 1 the physical mode branches
now have small wavenumbers and the computational mode branches have large wavenumbers; there is
an intermediate range of unstable wavenumbers for which there is no real root forωnum. Some modes,
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including those that were parasitic modes forc < 1, have switched between physical and computational
branches.

Although this is a simple example, and thec > 1 case is of little practical interest because it is unstable,
it makes an important point that the distinction between physical and computational modes might not
always be clear cut.

5 Families of spatial computational modes

We have already seen that the use of more than two time levels in the time integration scheme can give
rise to entire families of computational modes. Families ofcomputational modes can also arise through
the spatial discretization. This is particularly so when wedepart from traditional Cartesian or tensor
product grids such as latitude-longitude and consider instead grids using different kinds of polygonal
cells. Such grids are of increasing interest for ocean modelling, because of the flexibility of polygons
in fitting complex coastlines, and for global atmospheric modelling, because they can avoid the polar
resolution clustering of the latitude-longitude grid (e.g. Staniforth and Thuburn 2012).

We use the linear,f -plane shallow water equations (1)-(3) for illustration because numerical wave prop-
agation has been relatively well studied for this system. Seeking wavelike solutions of (1)-(3) leads to
the continuous dispersion relation

ω(ω2− f 2−Φk ·k) = 0. (14)

For each wavenumberk = (k, l) there are three roots. Theω = 0 root corresponds to steady geostrophic
modes while the other two correspond to eastward and westward propagating inertio-gravity modes.

Provided the grid is sufficiently regular, i.e. provided it has discrete translational symmetry, von Neu-
mann analysis can still be carried out on polygonal grids. The first step is to identify the basic repeating
unit of the grid and its associated degrees of freedom. Suppose there areD degrees of freedom per basic
repeating unit. The translational symmetry then ensures that wavelike solutions exists for which each of
theD degrees of freedom is proportional to exp{i(k ·x−ωt)}. Elimination of unknowns then leads to a
polynomial of degreeD for the frequencyω , implying a numerical dispersion relation withD branches.
If D > 3 then the excess branches might correspond to families of computational modes.

Such von Neumann analysis has been used on polygonal analogues of the A-, B-, and C-grids, as well
as on a variety of finite element schemes (e.g. Le Roux et al. 2007, Le Roux 2012; againD degrees
of freedom per basic repeating unit leads to a dispersion relation withD branches). Polygonal A-grids
suffer from parasitic modes like those discussed section3 (e.g. Ničković et al. 2002), so much recent
interest has focused on polygonal C-grids. The triangular and hexagonal C-grids are discussed in the
following subsections.

5.1 Triangular C-grid

Polygonal C-grids generalize the square C-grid of Fig.1 by storingφ at cell centres and normal velocity
components at cell edges. Figure5 shows the basic repeating unit on the triangular C-grid. There are
two φ degrees of freedom, one in each triangle, and three velocitydegrees of freedom. (The velocity
degrees of freedom at the other two edges belong to adjacent repeating units.)

As expected, von Neumann analysis leads to a quintic dispersion relation (Danilov 2010):

ω
f

{

(

ω
f

)4

−
(

ω
f

)2

(3Q+C)+3Q2(1−C)+Q(4C−1)

}

= 0, (15)
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Figure 5: Basic repeating unit on the triangular C-grid (left) and hexagonal C-grid (right), showing the locations
of the geopotential and normal velocity degrees of freedom.

whereQ= 8α2/3,α = Φ1/2/ f d is the Rossby radius divided byd the distance between adjacent triangle
centroids, andC is a function of the wavenumberk.

The ω = 0 root corresponds to steady geostrophic modes, two of the non-zero roots correspond to
inertio-gravity modes, and the other two correspond to inertio-gravity-like modes. (A rule of thumb for
C-grids is that the number of geostrophic mode branches is given by the number of vorticity degrees of
freedom, i.e. the number of grid vertices, per basic repeating unit, while the number of inertio-gravity
mode branches is given by the number of mass plus divergence degrees of freedom, i.e. twice the number
of cells, per basic repeating unit.)

It is tempting to interpret the fourth and fifth roots as computational modes. However, the issue is
complicated by the fact that there are enough degrees of freedom per basic repeating unit to support some
internal structure. Hence, a mode corresponding to a particular value ofk in the von Neumann analysis
might represent a mode of a larger wavenumber that is aliasedinto k. The possibility that the fourth and
fifth branches might actually represent physically reasonable extensions to higher wavenumber of the
second and third branches must be carefully checked by examining the mode structures and frequencies.

Figure6 shows the two positive frequency branches for various values of α . For small values ofk, ω/ f
should approach 1, which it always does for one of the branches. Thus, this branch must be the unaliased
one for which the mode wavenumber agrees, at least approximately, with the von Neumann analysisk.
For large values ofα , the two branches appear to cross at wavenumberkcross∆x≈ 2.42, suggesting that
the upper branch might be a physically reasonable branch whose true wavenumber 2kcross−k is aliased
into k. However, there are two flaws with this suggestion. First,kcross is different from the maximum
resolvable wavenumberkmaxd = 2π/

√
3, so some some wavenumbers would still be duplicated. Second,

the branches approach each other but do not actually cross; there is a small frequency gap. For smaller
α the gap is more noticeable. Thus although the aliased branchin some ways resembles a plausible
extension of the physical (unaliased) mode branch, in otherways it is unphysical.

For largeα the aliased branch sits above the unaliased branch while forsmall values ofα it sits below.
Forα = 1/(2

√
2) the two branches touch atk = 0 and exchange roles. This is another example in which

the distinction between physical and computational modes is blurred.

An almost identical phenomenon occurs with the RT0-P0 finiteelement pair on triangular grids (Le
Roux et al. 2007). This should not be too surprising, since the placement of geopotential and velocity
degrees of freedom is the same as on the triangular C-grid.
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Figure 6: Positive frequency branches of the triangular C-grid dispersion relation(15) (ω/ f vs k∆x with l = 0)
for various values ofα.

5.2 Hexagonal C-grid

Figure5 shows the basic repeating unit on the hexagonal C-grid. It has oneφ degree of freedom and
three velocity degrees of freedom. Thus we expect a quartic numerical dispersion relation, and this is
confirmed by von Neumann analysis (Thuburn 2008):

(

ω
f

)2
{

(

ω
f

)2

− [T(k)+QS(k)]

}

= 0, (16)

whereT andSare functions ofk. There are two branches of zero frequency geostrophic modesand two
branches of inertio-gravity modes. (Note that special careis needed in the discretization of the Coriolis
terms, otherwise there are no steady modes, Ničković et al. 2002, Thuburn 2008.)

The extra branch is now a branch of geostrophic modes. Again acareful examination is needed to deter-
mine whether or not it can be interpreted as a physically reasonable aliased extension of the unaliased
physical branch. For thef -plane case that leads to (16) all the geostrophic mode frequencies are exactly
zero, which is physically correct. Moreover, the mode structures on the second geostrophic branch are
indeed plausible approximations to higher wavenumber modes. Thus, on the basis of thisf -plane anal-
ysis, we might be justified in interpreting the second geostrophic mode branch as an aliased extension
of the physical geostrophic mode branch.

It is only when we introduce aβ effect, providing a Rossby wave propagation mechanism, that unphys-
ical behaviour becomes apparent. (We must then make a quasigeostrophic approximation to make the
von Neumann analysis tractable, Thuburn 2008.) The second branch modes are then found to have pos-
itive frequency (for positivek), whereas we might expect negative frequency for Rossby modes (Fig.7).
This would, in fact, be acceptable if we could interpret the true wavenumber of the modes as having
a negative zonal component (aliasing into the positivek of the von Neumann analysis). However, the
magnitude of the mode frequency is also much smaller than that of the continous equation mode it is
supposed to approximate. Moreover, the mode frequencies onthe second Rossby mode branch are very
strongly sensistive to the details of the discretization ofthe Coriolis term, whereas the frequencies of the
other three branches are much more robust.

Thus, there are some unphysical aspects of the second Rossbymode branch that could justify calling it
a computational mode branch, though these are rather more subtle than in the case of the triangular C-
grid. As on the triangular C-grid, there can be an exchange ofroles between physical and computational
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Figure 7: Four branches of theβ -plane dispersion relation for the hexagonal C-grid. Crosses are theoretical
predictions. Plus symbols are from a numerical eigenvalue calculation in a channel. Diamonds are for the
continuous equations. Frequencies greater than10−1s−1 in magnitude are for inertio-gravity modes. Smaller
negative frequencies are for the physical Rossby mode branch. Smaller positive frequencies are for the second
Rossby mode branch (crosses and pluses) or for modes that would alias into the plotted mode number at this
resolution (diamonds).

branches as parameters are varied (e.g. Fig. 6 of Thuburn 2008).

The main inaccuracy of the second Rossby mode branch is that the frequencies are too small. However,
small scale Rossby modes do have very small intrinsic frequency anyway, so that, in the presence of
a background flow (which is usually omitted in the von Neumannanalysis), the associated potential
vorticity field is advected almost passively by the background flow. The fact that the second branch
Rossby modes are excessively passive then makes negligibledifference to the behaviour. This argument
suggests that the extra Rossby mode branch might be relatively harmless in practice, if not positively
beneficial (by providing extra resolution for potential vorticity). Experience with the MPAS hexagonal
C-grid atmosphere and ocean models (W. Skamarock, T. Ringler, personal communication) and with a
hexagonal C-grid shallow water model developed under the Gung-Ho project has not revealed any prob-
lems that can be attributed to the second Rossby mode branch.Focused efforts to devise an idealized test
problem that would reveal a damaging effect of the second Rossby mode branch have not yet revealed
any such problem (A. Staniforth, personal communication).

6 Trapped modes

Most of our understanding of numerical wave disperson comesfrom regular grid cases for which
progress can be made through mathematical analysis. On irregular grids, such as stretched grids, the
behaviour can be significantly more complex. One interesting phenomenon is that waves can be re-
fracted, reflected, or even trapped by grid inhomogeneities.

For the simplest problems on one-dimensional grids some analytical progress is still possible (e.g. Vich-
nevetsky 1987, Long and Thuburn 2011). For conservative centred difference methods it can be shown
that a wave packet will be reflected from a location on the gridwhere its numerical group velocity
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Figure 8: Left: normal mode frequencies (only positive frequencies shown) for the system(17): continuous
equations (+ symbols), uniform grid (x symbols), and stretched grid with successive layer thicknesses in the ratio
1.042 (circles). Right: p-structure of the37th stretched grid normal mode showing trapping in the fine-resolution
part of the grid.

goes to zero; the reflected wave may have the same wavelength as the incident wave packet, or may be
converted into a parasitic mode, depending on the details ofthe numerical method.

The possibility of trapping has consequences for the spectrum of normal modes on non-uniform grids.
(In these more complex problems mathematical analysis becomes intractable; to make progress the
system matrix must be built and its eigenvalues found numerically.) Figure8 shows the frequency
spectrum for the simple acoustic wave system

pt +c2wz = 0, wt + pz = 0, (17)

solved numerically on a stretched grid of 20 levels. At first glance the higher frequencies appear to be
closer to the continuous dispersion relation than the numerical frequencies for a uniform grid. However,
examination of the mode structures for the higher frequencymodes shows that they are in fact trapped
in the finer resolution region of the grid.

Another example, taken from Weller et al. (2012), is shown inFig. 9. It shows the highest frequency
eigenmode for the linearized shallow water equations on a rotating sphere found numerically on coarse
versions of three different spherical C-grids. On each grid, the mode is trapped in regions of the grid that
have finer grid cells than elsewhere, giving a two-dimensional analogue of the one-dimensional trapping
shown in Fig.8.

7 Conclusions

Linear wave propagation can be misrepresented by numericalmethods in a variety of ways. Examples
presented here include modes that fail to propagate, parasitic modes with reversed group velocity, the
appearance of extra branches of modes in the dispersion relation due to either the time or space dis-
cretization, and wave trapping by grid inhomogeneities. Such poor wave behaviour can be damaging
to weather and climate model numerical solutions, for example leading to a noisy solution, a failure to
adjust correctly towards balance, a spurious release of instability, or an incorrect response to forcing.

The degree to which a given mode or branch of modes misrepresents the physics, and therefore dam-
ages the solution, can vary considerably. It is therefore not straightforward to give a universally ap-
plicable definition ofcomputational mode. Indeed, modes can switch between physical-mode-like and
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Figure 9: Geopotential structure of the highest frequency shallow water normal mode found on a latitude-
longitude grid (left), a hexagonal voronoi grid (centre), and a ‘voronized’ cubed sphere grid (right) (Weller et
al. 2012).

computational-mode-like behaviour as parameters are varied. The important thing is to be aware of the
ways in which linear wave propagation can be misrepresented, and their possible consequences, and for
model developers to analyse for such behaviour at an early stage of model design.
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