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An article starting on page 22 of this edition of the ECMWF Newsletter analyses forecast skill for two  
major windstorms which hit Europe in 2013. Case studies such as these are an important part of model 
evaluation as they allow a detailed diagnosis of model errors associated with specific types of severe 
weather. However, in order to determine to what extent such findings can be generalized, they need  
to be complemented by verification over a larger number of cases. The increased generality of results 
comes at a cost, since one has to include cases that are less extreme in order to obtain robust statistics. 
Nevertheless, the statistical assessment does provide a framework for the quantification of model 
deficiencies and the monitoring of forecast improvements. 

Here we evaluate the skill of the ECMWF forecasting system in predicting high wind events over a large 
sample. Events can be defined based on absolute thresholds (e.g. gale-force winds) or the degree of severity 
compared to climatology (e.g. wind speeds above the 99th percentile). While the absolute value may be more 
relevant with respect to damage, the percentile-based definition is useful for producing spatially or seasonally 
aggregated scores, since by definition the number of events becomes comparable between different regions 
and seasons. An additional reason for choosing a percentile threshold is that the actual impact of an event 
of given absolute intensity in a certain region will depend on how often it occurs in that location, as this will 
influence the degree to which the natural environment, buildings and infrastructure are adapted to it. In any 
case, the choice of specific thresholds involves a compromise. A high threshold is more targeted to rare 
events but at the cost of a small sample, while a low threshold may provide more reliable statistics but  
fails to distinguish the skill in forecasting extreme weather from the more general skill of the forecast.

By verifying wind speed forecasts against SYNOP observations, we will show that predictions of severe 
wind events have benefited from improvements in the forecasting system as much as more ‘normal’ 
weather as suggested by improvements in standard skill scores.

Verification method
A basic measure of forecast quality is whether the model is able to simulate the events of interest with  
the correct frequency. This aspect is evaluated using the frequency bias which is the ratio of the number  
of forecast and observed events. Here the local conditions (e.g. orography and surface characteristics)  
at the observation station play a role, as the direct model output is representative of the grid scale rather 
than a specific location. To evaluate the skill of the forecasts we use the symmetric extremal dependence 
index (SEDI) which was developed by Ferro & Stephenson (2011).

In this investigation we verify both the high-resolution forecast (HRES) and ensemble forecast (ENS) 
including the ensemble control forecast (CTRL). They are based on the same data assimilation and forecast 
model but at different resolutions (currently T1279, or 16 km, for the HRES and T639, or 32 km, for the ENS 
and CTRL). Results from the HRES and CTRL are also compared to those based on forecasts from the 
ERA-Interim reanalysis.

ERA-Interim uses the forecasting system which became operational in September 2006, but at a different 
resolution (Dee et al., 2011). The horizontal resolution of ERA-Interim is T255, corresponding to a grid 
spacing of 80 km. It uses 60 levels in the vertical, compared to 137 for HRES, and 91 for CTRL and ENS. 
One benefit of a ‘frozen’ forecasting system such as the one used for ERA-Interim is that it provides  
a benchmark for operational forecasts and allows the effect of atmospheric variability on the scores  
to be taken into account.

To calculate a reference model climate, we use the reforecast dataset for the ensemble system which  
has been operationally produced since 2008. It consists of one unperturbed and four perturbed ensemble 
members and is run once a week for initial dates in the past 20 years (18 years before 2012). The sensitivity 
of the resulting model climate to choices in the reforecast configuration, and their effect on the Extreme 
Forecast Index (EFI), are discussed in Zsótér et al. (2014). An important property of the reforecasts  
is that they are always produced with the latest model cycle.

This article appeared in the Meteorology section of ECMWF Newsletter No. 139 – Spring 2014, pp. 29–33.
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In this study we focus on the verification of wind speed against SYNOP observations in Europe (defined 
here as 35°–75°N, 12.5°W–42.5°E) where the overall station density is high. For 10-metre wind speed about 
1,600 stations were available. A weighting function is used to account for geographical variations in station 
density (Rodwell et al., 2010). The station climatology is calculated separately for each calendar month 
based on observations from the 30-year period 1980–2009.

Forecasts can be verified against analyses and observations. A drawback of using analyses in surface 
verification is that they share some of the systematic errors of the forecasts. On the other hand, 
conventional observations such as SYNOPs are more or less point measurements and do not represent 
the same scales as the model. This representativeness mismatch is particularly relevant for severe weather 
events that are small-scale (e.g. convective precipitation and wind gusts). Another issue is the quality  
control of observations, which becomes more important as the observations reach more extreme values 
and sample sizes get smaller. The evaluation presented here uses the simple nearest neighbour method  
to match forecasts and observations, and employs just a basic quality control. The results should therefore 
be regarded as a conservative estimate of forecast skill.

Verification scores
The verification of severe weather is commonly based on binary events defined as either exceeding a 
specific absolute value of a physical quantity or exceeding a percentile of the climate distribution of that 
quantity. Paired with the observation, the forecasts represent four types of outcome (hits, misses, false 
alarms and correct negatives) forming a 2x2 contingency table. 

60°N

50°N

0°E20°W
a Wind speeds greater than 16 ms-1

b 98th percentile of the model climate as threshold

20°E

60°N

50°N

0°E20°W 20°E

Hits Misses False alarms

Figure 1 Example of the spatial distribution of hits (green), misses (red) and false alarms (blue) for (a) wind speeds greater 
than 16 ms-1 and (b) use of the 98th percentile of the model climate as a threshold for the three-day forecast valid at 12 UTC 
on 28 October 2013, verified against the model analysis. Also shown is the mean-sea-level pressure of the forecast (black 
contours) and the analysis (blue contours).

Figure 1shows hits, misses and false alarms of the three-day forecast for 10-metre wind speed valid at  
12 UTC on 28 October 2013 (storm ‘Christian’, though it also has a variety of other names including ‘St Jude’ 
and ‘Simone’). The threshold of 16 ms-1 approximately corresponds to the 98th percentile of the model climate 
over the North Sea. This particular forecast underestimated the speed of propagation of the storm system. 
The timing error leads to false alarms to the west, and misses in the east. Use of the absolute value of 16 
ms-1(Figure 1a) leads to a restriction of the event mainly to the sea, while the definition relative to the model 
climate (Figure 1b) gives signals also over land. Because of this, and because of the need to aggregate over 
climatologically diverse areas, we use relative thresholds in this study. We specifically focus on the  
98th percentile of the climate distribution as a compromise between sample size and rarity of the event.

A common problem of standard scores which are based on a 2x2 contingency table, such as the equitable 
threat score or the Peirce skill score, is that they degenerate to trivial values (0 or 1) for rare events because the 
correctly forecast non-events (i.e. correct negatives) dominate the score. Consequently, Ferro & Stephenson 
(2011) introduced the symmetric extremal dependence index (SEDI) to address this problem – see Box A.
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Frequency Bias (FB)
Referring to the 2x2 contingency table,  
the frequency bias of an event is defined  
as the ratio of the number of forecasts  
and the number of observations.

Values larger (smaller) than 1 indicate  
the event is over-forecast (under-forecast). 

Symmetric Extremal Dependence Index (SEDI)

where H and F are the hit and false alarm  
rates given by:

Potential Economic Value (V)

Where r is the cost-loss ratio, B is the base rate  
of the event, and H and F are the hit and false  
alarm rates defined above.

FB= a + b
a +c

SEDI = logF – logH – log(1– F)+ log(1–  H)
logF + logH + log(1– F)+ log(1–  H)

V(r) = min(r,B) – Fr +H(1 r) B
min(r,B) Br

AVerification scores used in the investigation

Verification results – systematic errors in the forecast climatology
Before we evaluate the predictability of extreme events we investigate systematic errors in the forecast 
climatological distribution of such events. By climatology we refer to the full probability density function 
(PDF) for each point (observation station or model grid point) in a given month. The PDF will mainly be 
evaluated in its cumulative form (CDF), where the phrasing ‘98th percentile’ refers to a value which is not 
exceeded 98% of the time. Hence, evaluating daily data, values above the 98th percentile will on average 
occur once in 50 days at each grid point. Figure 2 shows the 98th percentile for 10-metre wind speed of the 
model climate (shaded) and the observed climatology at individual stations (circles). Plots such as this help 
to highlight differences between modelled and observed climatologies.

Over the Alps the model gives very low values of the 98th percentile. Observed values show a much large 
variation in this region than those generated by the model. There are stations with more than 15 ms-1 as 
observed for the 98th percentile, while the model climatology gives values less than 6 ms-1. The stations 
with high extreme winds are typically mountain stations, whereas nearby stations that have a wind-speed 
climatology similar to the model are usually located in valleys. Along the coasts the model underestimates 
the 98th percentile at many stations, for example along the North Sea coast. Here the climatology is sensitive 
to the land-sea mask in the model. It is another example of a representativeness mismatch between the 
model and observation scales. Nevertheless, in the evaluation performed here we have included both 
mountain and coastal stations.

The SEDI score has a number of desirable properties such as: no explicit dependence on the base rate 
(climatological frequency of occurrence), robustness to hedging (the score cannot be improved by making 
unskilful modifications to the forecast), and symmetry with respect to events and non-events. However, as 
pointed out in Ferro & Stephenson (2011), forecasts still need to be calibrated in order to obtain a fair comparison 
between different forecasting systems. It means that the results indicate potential rather than actual skill.

The calibration is performed for each threshold independently, over a three-month (i.e. seasonal) verification 
period. Data from all stations in the verification domain is pooled, which is necessary to get a sufficiently 
large sample; this is made possible by the use of percentile thresholds. The actual calibration is carried out 
iteratively by varying the percentile threshold applied to the forecast until the frequency bias (see Box A) gets 
as close as possible to 1, which means that the number of misses and false alarms become (almost) equal.

A contingency-table based score which measures actual skill is the potential economic value V (Richardson, 
2000). This score is based on a simple cost-loss model, where an event is connected to a loss that could be 
avoided by taking an action which is associated with a cost – see Box A. A zero value of V means there is no 
benefit in using the forecast rather than climatology as a basis for action, while V=1 means that one always 
makes the correct decision (perfect forecast). For ensemble forecasts V is calculated for a set of probability 
thresholds (e.g. action is taken if 10% of the members predict the event), and the maximum  
V for the ensemble is determined for each cost-loss ratio.
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Figure 2 Value of the 98th percentile for 10-metre 
wind speed in October for the model climate 
(shaded) and observed climatology (circles).

While Figure 2 refers to the most recent model configuration, Figure 3 shows the longer-term evolution  
of frequency bias for the 98th percentile of 10-metre wind speed in the operational forecast. All data  
is valid for 12 UTC. The figure includes results for HRES, CTRL and ERA-Interim for one-day, four-day  
and seven-day forecasts. In the absence of model drift the frequency bias should be approximately constant 
with forecast range and, optimally, it should also be close to 1. The reasons for a frequency bias could be 
representativeness (model resolution) and/or model errors. As already discussed, large representativeness 
errors may occur in the presence of steep orography for wind speed, but also surface characteristics  
(e.g. closeness to sea and surface roughness) around the station play a significant role. ERA-Interim  
is using the same forecasting system throughout this period; hence its variability with respect to the 
frequency bias mainly reflects atmospheric variability.

As shown in Figure 3, in terms of the frequency bias for the 98th percentile, HRES, CTRL, and ERA-Interim 
over-forecast the extreme winds. The frequency bias was similar for all three forecasts around 2007, when 
HRES and CTRL used the same model physics as ERA-Interim. In June 2011, the roughness length was 
modified, targeting the positive wind bias; this led to a marked improvement of the frequency bias in HRES 
and CTRL. For both forecasts the frequency bias is similar for different lead times, indicating no severe 
model drift with regard to wind speed.
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Figure 3 Time series for 2002–2013 (one-year 
running mean) of frequency bias for the 98th 
percentile over Europe for HRES, CTRL, and ERA-
Interim for day-1, day-4 and day-7 forecasts.
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Figure 4 SEDI score over the one-year period July 
2011 to  June 2012 as (a) a function of percentile  
for the four-day forecast and (b) as a function  
of forecast lead time for the 98th percentile.

Verification results – prediction of extreme events
We now consider the ability of the forecasting system to predict extreme events and how the forecast skill 
has varied with time.

Figure 4a shows the SEDI score for four-day forecasts as a function of the evaluated percentile for HRES, 
CTRL and ERA-Interim. As described above, SEDI is designed to not explicitly depend on the base rate. 
Therefore a change in SEDI for higher percentiles reflects an actual change in the ability of the forecasting 
system in predicting such events. In general SEDI decreases for more extreme events, and it does so more 
rapidly for percentiles above the 95th. As expected, HRES generally scores higher than CTRL and ERA-
Interim but the differences do not seem to increase for more extreme events. 

As can be seen in Figure 4b, the skill of the forecasts decreases with increasing lead time. The loss in skill from 
day 1 to day 4 for the 98th percentile is about the same as the loss in skill from the 80th to the 98th percentile  
on day 4. Nevertheless, positive skill for the 98th percentile is present even at day 10 in all three forecasts.

The results displayed in Figure 4 indicate that the skill is higher for HRES than for CTRL, showing the benefit 
of the higher resolution. As expected, the difference between HRES and ERA-Interim is much larger, indicating 
the importance of both increased resolution and model changes for the prediction of severe wind events.

Figure 5 illustrates to what extent forecast skill has improved over time. It shows time series from 2002  
to 2013 of the difference in SEDI between HRES and ERA-Interim for three percentiles (50th, 80th and 98th). 
These three percentiles represent the change in skill for the median, one-in-five-day events, and one-in-fifty-
day events. A positive value indicates that HRES is better than ERA-Interim. In general the scores are better 
for HRES than ERA-Interim for all years (because of the higher resolution), and the operational forecasts 
improve over time compared to ERA-Interim due to increasing resolution and model improvements.

Any trends in the difference between HRES and ERA-Interim are superimposed on considerable inter-annual 
variability which increases with lead time and percentile. A general conclusion from these plots, although  
the results are noisy, is that over the past ten years SEDI has improved by about the same amount for the 
50th, 80th and 98th percentiles. This is an important result since it suggests that (a) forecasts of extremes 
benefit from the general model improvement and (b) one may not need to specifically verify extremes  
when evaluating model changes.

Figure 5 also shows that for the 50th and 80th percentiles the difference in skill between HRES and ERA-
Interim is slightly higher at day 4 than at days 1 and 7. This can be explained by the constraining effect of 
the analysis on the forecast at short lead times and the asymptotic approach towards the model climatology 
at longer lead times.
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A user-oriented measure of severe wind forecast skill is the potential economic value; this is shown  
in Figure 6 for the 98th percentile. The benefit to the user critically depends on their specific cost-loss  
ratio. At forecast day 1 the users with cost-loss ratios up to about 0.2 can benefit from the forecast. With 
increasing lead time this range diminishes. As for SEDI, the skill of HRES exceeds CTRL and ERA-Interim. 
Due to the additional degree of freedom provided by the choice of probability threshold, the ensemble 
forecast has considerably higher skill than HRES for users in a certain cost-loss range. This is most 
apparent in the intermediate forecast range at day 4.

a 50th percentile

2003 2005 2007 2009 2011 2013

2003 2005 2007 2009 2011 2013

2003 2005 2007 2009 2011 2013
−0.05

0

0.05

0.1

0.15

0.2

SE
D

I d
i�

er
en

ce

Day-1 forecast
Day-4 forecast
Day-7 forecast

b 80th percentile

−0.05

0

0.05

0.1

0.15

0.2

SE
D

I d
i�

er
en

ce

c 98th percentile

−0.05

0

0.05

0.1

0.15

0.2

SE
D

I d
i�

er
en

ce

Figure 5 Time series from 2002 to 2013 of  
the difference in SEDI between HRES and  
ERA-Interim for 10-metre wind speeds above  
(a) 50th, (b) 80th and (c) 98th percentiles for  
day-1, day-4 and day-7 forecasts.

Figure 6 Potential economic value of forecasts of 
10-metre wind speed exceeding the 98th percentile 
for day-1, day-4 and day-7 forecasts for July 2011 
to June 2012. 
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Summary and outlook
We have evaluated the forecast performance for extreme events of wind speed. However, verification  
of extreme events is not straightforward as sample sizes are small and scores need to be designed to be 
applicable to rare events. With respect to the threshold for event definition we focus on the 98th percentile  
of the climate distribution, as a compromise between sample size and rarity of the event. On average 
such an event occurs once every 50 days and can therefore not be regarded as extreme. High-impact 
events such as the storm Christian (see the article by Tim Hewson and others in this edition of the ECMWF 
Newsletter) have return periods of several years.

One aspect of forecast performance is whether a model can produce events with a frequency similar to  
that observed. Such an evaluation is useful to find systematic model issues and to recognize limitations  
due to resolution in simulating extreme events. By studying maps of frequency biases for the 98th percentile, 
potential sources for biases of extreme events can be identified, such as orographic and coastal effects.

We have quantified forecast skill using the recently-developed SEDI score. For a fair comparison of 
different forecasts, they have to be calibrated before calculation of the score. The calibration adds 
complexity to the verification and removes part of the systematic error such that the result needs  
to be interpreted as potential skill.

With respect to the long-term evolution of the SEDI score, we found that SEDI for the 98th percentile has 
improved over the past ten years by about as much as the 50th and 80th percentiles. This indicates that the 
prediction of extremes has benefitted from improvements in the forecasting system (data assimilation and 
model) as much as the forecasts of more ‘normal’ weather.

Apart from the removal of frequency bias required in the computation of SEDI, no calibration has been 
performed. We expect that forecast calibration will improve forecast skill. Work is being carried out  
at ECMWF to explore this topic.

We have focused on scores based on hit and false alarm rates. Future work will include more probabilistic 
verification. One possibility is to use a modified version of the continuous ranked probability score (CRPS), 
where a function is applied to give more weight to extreme events.

In this study we used SYNOP observations for verification and employed only the most basic quality control 
by filtering out obviously unphysical values. In order to be able to extend the evaluation to higher percentiles 
a more sophisticated quality control is required. Finally, we need to acknowledge that for events with return 
periods of several years, such as the storm Christian, a robust statistic is difficult to achieve even with  
a very good quality control process. This is why case studies will remain an important tool in the evaluation  
of forecasts of extremes.


